Solveeit Logo

Question

Question: Show that : \(\begin{gathered} \left( i \right)\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \ci...

Show that :
(i)tan48tan23tan42tan67=1 (ii)cos38cos52sin38sin52=0 \begin{gathered} \left( i \right)\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1 \\\ \left( {ii} \right)\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0 \\\ \end{gathered}

Explanation

Solution

Hint:In this question use some basic trigonometric conversions like tan(90θ)=cotθ\tan \left( {90 - \theta } \right) = \cot \theta ,sin(90θ)=cosθ\sin \left( {90 - \theta } \right) = \cos \theta , cos(90θ)=sinθ\cos \left( {90 - \theta } \right) = \sin \theta ,cot(90θ)=tanθ\cot \left( {90 - \theta } \right) = \tan \theta , cotθ=1tanθ\cot \theta = \dfrac{1}{{\tan \theta }}.

Complete step-by-step answer:
According to the question
(i) We have tan48tan23tan42tan67=1\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ } = 1
LHS=LHS = tan48tan23tan42tan67\tan {48^ \circ }\tan {23^ \circ }\tan {42^ \circ }\tan {67^ \circ }
=tan(9042)tan23tan42tan(9023) =cot42tan42tan23cot23 =cot42×1cot42×tan23×1tan23=1  = \tan \left( {{{90}^ \circ } - {{42}^ \circ }} \right)\tan {23^ \circ }\tan {42^ \circ }\tan \left( {{{90}^ \circ } - {{23}^ \circ }} \right) \\\ = \cot {42^ \circ }\tan {42^ \circ }\tan {23^ \circ }\cot {23^ \circ } \\\ = \cot {42^ \circ } \times \dfrac{1}{{\cot {{42}^ \circ }}} \times \tan {23^ \circ } \times \dfrac{1}{{\tan {{23}^ \circ }}} = 1 \\\
=R.H.S.= R.H.S. Hence , Proved
(ii) We have cos38cos52sin38sin52=0\cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ } = 0
LHS=cos38cos52sin38sin52LHS = \cos {38^ \circ }\cos {52^ \circ } - \sin {38^ \circ }\sin {52^ \circ }
=cos(9052)cos52sin(9052)sin52 =sin52cos52cos52sin52 =0=RHS  = \cos \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\cos {52^ \circ } - \sin \left( {{{90}^ \circ } - {{52}^ \circ }} \right)\sin {52^ \circ } \\\ = \sin {52^ \circ }\cos {52^ \circ } - \cos {52^ \circ }\sin {52^ \circ } \\\ = 0 = RHS \\\
Hence proved .

Note: It is always advisable to remember some basic conversions while involving trigonometric questions.Students should remember the trigonometric identities and formulas for solving these types of questions.