Solveeit Logo

Question

Question: Show that \(a{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}=s+\dfra...

Show that acos2A2+bcos2B2+ccos2C2=s+ΔRa{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}=s+\dfrac{\Delta }{R}

Explanation

Solution

In this problem we need to show that acos2A2+bcos2B2+ccos2C2=s+ΔRa{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}=s+\dfrac{\Delta }{R}. First, we will consider the LHS part of the given equation. In LHS we will consider the term cos2A2{{\cos }^{2}}\dfrac{A}{2}. From the trigonometric formula cos2A=2cos2A1\cos 2A=2{{\cos }^{2}}A-1, we will write cos2A2=1+cosA2{{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}. Similarly, we can write this for cos2B2{{\cos }^{2}}\dfrac{B}{2}, cos2C2{{\cos }^{2}}\dfrac{C}{2} and substitute those values in the given equation. Here we will apply the formula for the properties of the triangle which is s=a+b+c2s=\dfrac{a+b+c}{2} and from sine rule asinA=bsinB=csinC=2R\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R we will use a=2RsinAa=2R\sin A, b=2RsinBb=2R\sin B, c=2RsinCc=2R\sin C in the obtained equation. Now we will use sin2A=2sinAcosA\sin 2A=2\sin A\cos A in the equation. Now we will get sin2A+sin2B+sin2C\sin 2A+\sin 2B+\sin 2C in the equation and we will use the value of sin2A+sin2B+sin2C\sin 2A+\sin 2B+\sin 2C as 4sinAsinBsinC4\sin A\sin B\sin C and then we will use the formula Δ=2R2sinAsinBsinC\Delta =2{{R}^{2}}\sin A\sin B\sin C and simplify the equation to get the required result.

Complete step by step solution:
Given equation, acos2A2+bcos2B2+ccos2C2=s+ΔRa{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}=s+\dfrac{\Delta }{R}.
Considering the LHS part of the above equation, then we will get
LHS=acos2A2+bcos2B2+ccos2C2LHS=a{{\cos }^{2}}\dfrac{A}{2}+b{{\cos }^{2}}\dfrac{B}{2}+c{{\cos }^{2}}\dfrac{C}{2}
From the trigonometric formula cos2A=2cos2A1\cos 2A=2{{\cos }^{2}}A-1, we can write cos2A2=1+cosA2{{\cos }^{2}}\dfrac{A}{2}=\dfrac{1+\cos A}{2}. Using this formula in the above equation, then we will get
LHS=a[1+cosA2]+b[1+cosB2]+c[1+cosC2]LHS=a\left[ \dfrac{1+\cos A}{2} \right]+b\left[ \dfrac{1+\cos B}{2} \right]+c\left[ \dfrac{1+\cos C}{2} \right]
Simplifying the above equation by using mathematical operations, then we will have
LHS=a2+acosA2+b2+bcosB2+c2+ccosC2 LHS=a+b+c2+12[acosA+bcosB+ccosC] \begin{aligned} & LHS=\dfrac{a}{2}+\dfrac{a\cos A}{2}+\dfrac{b}{2}+\dfrac{b\cos B}{2}+\dfrac{c}{2}+\dfrac{c\cos C}{2} \\\ & \Rightarrow LHS=\dfrac{a+b+c}{2}+\dfrac{1}{2}\left[ a\cos A+b\cos B+c\cos C \right] \\\ \end{aligned}
Using the formula s=a+b+c2s=\dfrac{a+b+c}{2} and from sine rule asinA=bsinB=csinC=2R\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R using the values a=2RsinAa=2R\sin A, b=2RsinBb=2R\sin B, c=2RsinCc=2R\sin C in the above equation, then we will get
LHS=s+12[2RsinAcosA+2RsinBcosB+2RsinCcosC]LHS=s+\dfrac{1}{2}\left[ 2R\sin A\cos A+2R\sin B\cos B+2R\sin C\cos C \right]
Taking RR as common from the above equation and using the trigonometric formula sin2A=2sinAcosA\sin 2A=2\sin A\cos A in the above equation, then we will have
LHS=s+R2[sin2A+sin2B+sin2C]LHS=s+\dfrac{R}{2}\left[ \sin 2A+\sin 2B+\sin 2C \right]
We have the trigonometric formula sin2A+sin2B+sin2C=4sinAsinBsinC\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C in the above equation, then we will get
LHS=s+R2(4sinAsinBsinC)LHS=s+\dfrac{R}{2}\left( 4\sin A\sin B\sin C \right)
Divide and multiply the term 4sinAsinBsinC4\sin A\sin B\sin C with RR, then we will get
LHS=s+2R2sinAsinBsinCRLHS=s+\dfrac{2{{R}^{2}}\sin A\sin B\sin C}{R}
We have the trigonometric formula Δ=2R2sinAsinBsinC\Delta =2{{R}^{2}}\sin A\sin B\sin C. Substituting this formula in the above equation, then we will get
LHS=s+ΔR LHS=RHS \begin{aligned} & LHS=s+\dfrac{\Delta }{R} \\\ & \therefore LHS=RHS \\\ \end{aligned}

Note: In trigonometry this kind of problem very often. So, we should be clear about all the formulas and properties of the triangle to use them at a suitable step. Some of the properties of triangle which are used in this kind of problems is given by
sinA2=(sb)(sc)bc\sin \dfrac{A}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{bc}}, cosA2=s(sa)bc\cos \dfrac{A}{2}=\sqrt{\dfrac{s\left( s-a \right)}{bc}}, tanA2=(sb)(sc)s(sa)\tan \dfrac{A}{2}=\sqrt{\dfrac{\left( s-b \right)\left( s-c \right)}{s\left( s-a \right)}}. We can use these formulas for remaining angles with a minor change.