Solveeit Logo

Question

Question: Show that \(1 + \dfrac{1}{{2!}} + \dfrac{1}{{4!}} + ........ = \dfrac{1}{2}\left( {e + \dfrac{1}{e}}...

Show that 1+12!+14!+........=12(e+1e)1 + \dfrac{1}{{2!}} + \dfrac{1}{{4!}} + ........ = \dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right)

Explanation

Solution

Hint : To prove the expression given in the question, we will use the expression of binomial expansion of ex{e^x}. Then we will substitute the value of xx as 1. Next, we will use the expression of binomial expansion of ex{e^{ - x}} and again we will substitute the value of xx as 1. Now, on adding both expressions obtained from the binomial expansion of ex{e^x} and ex{e^{ - x}} , we will prove the above result.

Complete step-by-step answer :
We will use the expression of binomial expansion of ex{e^x} which can be written as:
ex=1+x+x22!+x33!+x44!+.............{e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + .............
We will also use the expression of binomial expansion of ex{e^{ - x}} which can be written as
ex=1x+x22!x33!+x44!+.............{e^{ - x}} = 1 - x + \dfrac{{{x^2}}}{{2!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + .............
Step by step answer:
We know that binomial expansion of the function ex{e^x} can be expressed as
ex=1+x+x22!+x33!+x44!+.............{e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + .............
We will substitute 1 for xx in the above expression.
e=2+12!+13!+14!+.......e = 2 + \dfrac{1}{{2!}} + \dfrac{1}{{3!}} + \dfrac{1}{{4!}} + ....... ……(i)
We also know that the binomial expansion of the function ex{e^{ - x}} can be expressed as
ex=1x+x22!x33!+x44!+.............{e^{ - x}} = 1 - x + \dfrac{{{x^2}}}{{2!}} - \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + .............
We will substitute 1 for xx in the above expression.
e1=12!13!+14!+.......{e^{ - 1}} = \dfrac{1}{{2!}} - \dfrac{1}{{3!}} + \dfrac{1}{{4!}} + ....... ……(ii)
Now we will add equation (i) and (ii), we will get

e + {e^{ - 1}} = 2 + \dfrac{1}{{2!}} + \dfrac{1}{{3!}} + \dfrac{1}{{4!}} + \dfrac{1}{{2!}} - \dfrac{1}{{3!}} + \dfrac{1}{{4!}} + ......\\\ e + {e^{ - 1}} = 2 + \dfrac{1}{{2!}} + \dfrac{1}{{4!}} + ...... \end{array}$$ Next, we will divide both side of the above expression by 2. Then the above expression can be it expressed as: $$\begin{array}{l} \dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right) = \dfrac{1}{2}\left( {2 + 2\left( {\dfrac{1}{{2!}}} \right) + 2\left( {\dfrac{1}{{4!}}} \right) + ......} \right)\\\ \dfrac{1}{2}\left( {e + \dfrac{1}{e}} \right) = 1 + \dfrac{1}{{2!}} + \dfrac{1}{{4!}} + ........ \end{array}$$ Hence proved. **Note** : To prove the expression given in the question, we should have prior knowledge of the binomial expansion of exponential functions. In this question we are using the right-hand expression to prove the result. We will have to take care of signs of variables before writing the expressions.