Solveeit Logo

Question

Question: show some problems like a body goes from 100C to 80C in time t when sorrounding temp is 25 then tim...

show some problems like a body goes from 100C to 80C in time t when sorrounding temp is 25 then time required fro the body to go from 80 to 70

Answer

Δt=tln(11/9)ln(15/11)\Delta t = \frac{t\,\ln(11/9)}{\ln(15/11)}

Explanation

Solution

We use Newton’s law of cooling, which states:

dTdt=k(TTs)\frac{dT}{dt}=-k\,(T-T_s)

with solution

TTs=(T0Ts)ekt.T - T_s = (T_0-T_s)e^{-kt}.

Step 1. Cooling from 100°C to 80°C

Let T0=100CT_0 = 100^\circ\text{C}, T=80CT = 80^\circ\text{C}, and Ts=25CT_s = 25^\circ\text{C}. Then,

8025=(10025)ekt55=75ekt.80 - 25 = (100-25)e^{-kt}\quad\Longrightarrow\quad 55 = 75\,e^{-kt}.

Thus,

ekt=5575=1115.e^{-kt}=\frac{55}{75}=\frac{11}{15}.

Taking logarithms:

kt=ln(1115)=ln(1511).kt = -\ln\left(\frac{11}{15}\right)=\ln\left(\frac{15}{11}\right).

So,

k=ln(15/11)t.k=\frac{\ln(15/11)}{t}.

Step 2. Cooling from 80°C to 70°C

Now, for cooling from T0=80CT_0 = 80^\circ\text{C} to T=70CT=70^\circ\text{C} with the same ambient Ts=25CT_s = 25^\circ\text{C}:

7025=(8025)ekΔt45=55ekΔt.70 - 25 = (80-25)e^{-k\Delta t}\quad\Longrightarrow\quad 45 = 55\,e^{-k\Delta t}.

Thus,

ekΔt=4555=911.e^{-k\Delta t}=\frac{45}{55}=\frac{9}{11}.

Taking logarithms:

kΔt=ln(911)=ln(119).k\Delta t = -\ln\left(\frac{9}{11}\right)=\ln\left(\frac{11}{9}\right).

Substitute k=ln(15/11)tk=\frac{\ln(15/11)}{t}:

ln(15/11)tΔt=ln(119),\frac{\ln(15/11)}{t}\Delta t = \ln\left(\frac{11}{9}\right),

which gives

Δt=tln(11/9)ln(15/11).\Delta t = \frac{t\,\ln(11/9)}{\ln(15/11)}.