Solveeit Logo

Question

Question: Shots fired simultaneously from the top and bottom of a vertical cliff with the elevation $\alpha$ a...

Shots fired simultaneously from the top and bottom of a vertical cliff with the elevation α\alpha and β\beta respectively, strike an object simultaneously at the same point on the ground. If s is the horizontal distance of the object from the cliff, then what is the height of the cliff. (β>α\beta > \alpha)

Answer

h=s(tanβtanα)h = s(\tan\beta - \tan\alpha)

Explanation

Solution

Let the height of the cliff be hh and the horizontal distance from the cliff to the object be ss. Two projectiles are fired simultaneously:

  • From the top of the cliff with initial speed uu at an angle α\alpha with the horizontal.
  • From the bottom of the cliff with initial speed vv at an angle β\beta with the horizontal where β>α\beta > \alpha.

For the projectile from the top:

  1. Horizontal motion:

    s=ucosαtu=stcosαs = u \cos\alpha \, t \quad \Rightarrow \quad u = \frac{s}{t\cos\alpha}
  2. Vertical motion (starting from height hh and landing at ground level):

    h+usinαt12gt2=0h=12gt2stanαh + u \sin\alpha\, t - \frac{1}{2}gt^2 = 0 \quad \Rightarrow \quad h = \frac{1}{2}gt^2 - s \tan\alpha

For the projectile from the bottom:

  1. Vertical motion (starts from ground and returns to ground):

    vsinβt12gt2=0t=2vsinβg(ignoring t=0)v \sin\beta\, t - \frac{1}{2}gt^2 = 0 \quad \Rightarrow \quad t = \frac{2v\sin\beta}{g}\quad (\text{ignoring } t=0)
  2. Horizontal motion:

    s=vcosβt=vcosβ(2vsinβg)=v2sin2βgs = v \cos\beta\, t = v \cos\beta \cdot \left(\frac{2v\sin\beta}{g}\right) = \frac{v^2\sin2\beta}{g}

    This gives:

    v2=gssin2βv^2 = \frac{g\,s}{\sin2\beta}

Since both projectiles hit the target simultaneously, the same time tt holds for both. Substitute the expression for tt obtained from the bottom shot into the vertical equation of the top shot.

Calculate:

t=2vsinβgt2=4v2sin2βg2t = \frac{2v\sin\beta}{g} \quad \Rightarrow \quad t^2 = \frac{4v^2\sin^2\beta}{g^2}

and using v2=gssin2βv^2 = \frac{g s}{\sin2\beta}:

t2=4sin2βg2gssin2β=4ssin2βgsin2βt^2 = \frac{4\sin^2\beta}{g^2}\cdot\frac{g s}{\sin2\beta} = \frac{4s\sin^2\beta}{g\,\sin2\beta}

Now, substitute into the top projectile’s vertical equation:

h=12gt2stanα=12g(4ssin2βgsin2β)stanαh = \frac{1}{2}g t^2 - s \tan\alpha = \frac{1}{2}g\left(\frac{4s\sin^2\beta}{g\,\sin2\beta}\right) - s \tan\alpha h=2ssin2βsin2βstanαh = \frac{2s\sin^2\beta}{\sin2\beta} - s \tan\alpha

Recall the trigonometric identity:

sin2β=2sinβcosβsin2βsin2β=sin2β2sinβcosβ=sinβ2cosβ=12tanβ\sin2\beta = 2\sin\beta\cos\beta \quad \Rightarrow \quad \frac{\sin^2\beta}{\sin2\beta} = \frac{\sin^2\beta}{2\sin\beta\cos\beta} = \frac{\sin\beta}{2\cos\beta} = \frac{1}{2}\tan\beta

Thus,

h=2s(12tanβ)stanα=stanβstanαh = 2s \cdot \left(\frac{1}{2}\tan\beta\right) - s \tan\alpha = s\tan\beta - s\tan\alpha h=s(tanβtanα)h = s\left(\tan\beta - \tan\alpha\right)