Solveeit Logo

Question

Question: Shortest distance between lines \(\overrightarrow{r} = 6\widehat{i} + 2\widehat{j} + 2\widehat{k} +...

Shortest distance between lines

r=6i^+2j^+2k^+λ(i^2j^+2k^)\overrightarrow{r} = 6\widehat{i} + 2\widehat{j} + 2\widehat{k} + \lambda(\widehat{i}–2\widehat{j} + 2\widehat{k}) andr=4i^k^+µ(3i^2j^2k^)\overrightarrow{r} = –4\widehat{i}–\widehat{k} + µ(3\widehat{i}–2\widehat{j}–2\widehat{k}) is -

A

0

B
  • 2 units
C
  • 30 units
D

9 units

Answer

9 units

Explanation

Solution

Shortest Distance = (a2a1).(b1×b2)b1×b2\left| \frac{\left( {\overrightarrow{a}}_{2}–{\overrightarrow{a}}_{1} \right).\left( {\overrightarrow{b}}_{1} \times {\overrightarrow{b}}_{2} \right)}{\left| {\overrightarrow{b}}_{1} \times {\overrightarrow{b}}_{2} \right|} \right|