Solveeit Logo

Question

Quantitative Ability and Data Interpretation Question on Logarithms

Sham is trying to solve the expression:
logtan1+logtan2+logtan3++logtan89.\log \tan 1^\circ + \log \tan 2^\circ + \log \tan 3^\circ + \ldots + \log \tan 89^\circ.
The correct answer would be?

A

1

B

12\frac{1}{\sqrt{2}}

C

0

D

-1

Answer

0

Explanation

Solution

The given expression is:
logtan1+logtan2+logtan3++logtan89.\log \tan 1^\circ + \log \tan 2^\circ + \log \tan 3^\circ + \ldots + \log \tan 89^\circ.
We can rewrite the expression using the properties of logarithms:
logtan1+logtan2+logtan3++logtan89=log(tan1tan2tan3tan89).\log \tan 1^\circ + \log \tan 2^\circ + \log \tan 3^\circ + \ldots + \log \tan 89^\circ = \log (\tan 1^\circ \cdot \tan 2^\circ \cdot \tan 3^\circ \cdot \ldots \cdot \tan 89^\circ).
Using the identity tan(90x)=cotx\tan (90^\circ - x) = \cot x, we can pair the terms:
tan1tan89=tan1cot1=1,\tan 1^\circ \cdot \tan 89^\circ = \tan 1^\circ \cdot \cot 1^\circ = 1,
tan2tan88=tan2cot2=1,\tan 2^\circ \cdot \tan 88^\circ = \tan 2^\circ \cdot \cot 2^\circ = 1,
tan3tan87=tan3cot3=1,\tan 3^\circ \cdot \tan 87^\circ = \tan 3^\circ \cdot \cot 3^\circ = 1,
and so on up to
tan44tan46=tan44cot44=1.\tan 44^\circ \cdot \tan 46^\circ = \tan 44^\circ \cdot \cot 44^\circ = 1.
Additionally, tan45=1\tan 45^\circ = 1.
Hence, the product of all the terms is:
tan1tan2tan3tan44tan45tan46tan89=1.\tan 1^\circ \cdot \tan 2^\circ \cdot \tan 3^\circ \cdot \ldots \cdot \tan 44^\circ \cdot \tan 45^\circ \cdot \tan 46^\circ \cdot \ldots \cdot \tan 89^\circ = 1.
Therefore, the logarithm of the product is:
log(tan1tan2tan3tan89)=log1=0.\log (\tan 1^\circ \cdot \tan 2^\circ \cdot \tan 3^\circ \cdot \ldots \cdot \tan 89^\circ) = \log 1 = 0.
Thus, the correct answer is Option C :0.