Solveeit Logo

Question

Question: Several spherical drops of a liquid of radius r coalesce to form a single drop of radius R. If T is ...

Several spherical drops of a liquid of radius r coalesce to form a single drop of radius R. If T is surface tension and V is volume under consideration, then the release of energy is

A

3VT(1r+1R)3VT\left( \frac{1}{r} + \frac{1}{R} \right)

B

3VT(1r1R)3VT\left( \frac{1}{r} - \frac{1}{R} \right)

C

VT(1r1R)VT\left( \frac{1}{r} - \frac{1}{R} \right)

D

VT(1r2+1R2)VT\left( \frac{1}{r^{2}} + \frac{1}{R^{2}} \right)

Answer

3VT(1r1R)3VT\left( \frac{1}{r} - \frac{1}{R} \right)

Explanation

Solution

Energy released = 4πTR3[1r1R]=3(43πR3)T[1r1R]=3VT[1r1R]4\pi TR^{3}\left\lbrack \frac{1}{r} - \frac{1}{R} \right\rbrack = 3\left( \frac{4}{3}\pi R^{3} \right)T\left\lbrack \frac{1}{r} - \frac{1}{R} \right\rbrack = 3VT\left\lbrack \frac{1}{r} - \frac{1}{R} \right\rbrack