Solveeit Logo

Question

Question: Set of all the values of x satisfying the inequality \(\log_{x + \frac{1}{x}}\left( \log_{2}\frac{x...

Set of all the values of x satisfying the inequality

logx+1x(log2x1x+2)\log_{x + \frac{1}{x}}\left( \log_{2}\frac{x - 1}{x + 2} \right)> 0 is

A

(– 5, – 2)

B

(2, 5)

C

(5, ¥)

D

f

Answer

f

Explanation

Solution

\ x1x+2\frac{x - 1}{x + 2}> 0; \ x > 1, x < – 2 ….(i)

But x + 1x\frac{1}{x} > 0; \ x2+1x>0\frac{x^{2} + 1}{x} > 0 ̃ x > 0 ….(ii)

From (i) & (ii) x > 1; logx+1x(1og2x1x+2)>0\log_{x + \frac{1}{x}}\left( 1og_{2}\frac{x - 1}{x + 2} \right) > 0

Take antilog, log2x1x+2\frac{x - 1}{x + 2}>1

Take antilogx1x+2\frac{x - 1}{x + 2} > 2; x+5x+2\frac{x + 5}{x + 2} < 0 ̃ xÎ(–5, –2)

But not true as x > 1