Solveeit Logo

Question

Question: Separate \[{\sin ^{ - 1}}\left( {\cos \theta + i\sin \theta } \right)\] into real and imaginary part...

Separate sin1(cosθ+isinθ){\sin ^{ - 1}}\left( {\cos \theta + i\sin \theta } \right) into real and imaginary parts, where θ is a positive acute angle.

Explanation

Solution

Here, we need to find real and imaginary values separately. We will assume cosθ+isinθ=sin(x+iy)\cos \theta + i\sin \theta = \sin (x + iy). Then, we will use the identity cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 and sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B. And substituting it and then separating the real and imaginary part, we will solve and get the final output.

Complete step by step answer:
Given that, sin1(cosθ+isinθ){\sin ^{ - 1}}\left( {\cos \theta + i\sin \theta } \right)
Let, cosθ+isinθ=sin(x+iy)\cos \theta + i\sin \theta = \sin (x + iy)
We know that, sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
Using this formula, we will get,
cosθ+isinθ=sinxcosiy+cosxsiniy\Rightarrow \cos \theta + i\sin \theta = \sin x\cos iy + \cos x\sin iy
We know that, cosiy=coshy\cos iy = \cosh y and siniy=isinhy\sin iy = i\sinh y
Substituting these values, we will get,
cosθ+isinθ=sinxcoshy+icosxsinhy\Rightarrow \cos \theta + i\sin \theta = \sin x\cosh y + i\cos x\sinh y

Now, we will equate the real and imaginary parts separately as below:
Real part: cosθ=sinxcoshy\cos \theta = \sin x\cosh y ----- (1)
Imaginary part: sinθ=cosxsinhy\sin \theta = \cos x\sinh y ---- (2)
Next, squaring and adding (1) and (2), we will get,
cos2θ+sin2θ=sin2xcosh2y+cos2xsinh2y\Rightarrow {\cos ^2}\theta + {\sin ^2}\theta = {\sin ^2}x{\cosh ^2}y + {\cos ^2}x{\sinh ^2}y
We will use the trigonometric ratios identity cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1, applying this we will get,
1=sin2xcosh2y+cos2xsinh2y\Rightarrow 1 = {\sin ^2}x{\cosh ^2}y + {\cos ^2}x{\sinh ^2}y
Taking cosh2y=1+sinh2y{\cosh ^2}y = 1 + {\sinh ^2}y and applying this, we will get,
1=sin2x(1+sinh2y)+cos2xsinh2y\Rightarrow 1 = {\sin ^2}x\left( {1 + {{\sinh }^2}y} \right) + {\cos ^2}x{\sinh ^2}y

Opening the brackets, we will get,
1=sin2x+sin2xsinh2y+cos2xsinh2y\Rightarrow 1 = {\sin ^2}x + {\sin ^2}x{\sinh ^2}y + {\cos ^2}x{\sinh ^2}y
1=sin2x+sinh2y(sin2x+cos2x)\Rightarrow 1 = {\sin ^2}x + {\sinh ^2}y\left( {{{\sin }^2}x + {{\cos }^2}x} \right)
1=sin2x+sinh2y(1)\Rightarrow 1 = {\sin ^2}x + {\sinh ^2}y\left( 1 \right) (sin2x+cos2x=1)\left( {\because {{\sin }^2}x + {{\cos }^2}x = 1} \right)
1=sin2x+sinh2y\Rightarrow 1 = {\sin ^2}x + {\sinh ^2}y
By using transposing method, we will move the RHS term i.e. sin2x{\sin ^2}x to LHS, we will get,
1sin2x=sinh2y\Rightarrow 1 - {\sin ^2}x = {\sinh ^2}y
We know that, 1sin2x=cos2x1 - {\sin ^2}x = {\cos ^2}x and substituting this value, we will get,
cos2x=sinh2y\Rightarrow {\cos ^2}x = {\sinh ^2}y ----- (3)

Now, we will use the equation (2), to get the real part value, i.e.
sinθ=cosxsinhy\sin \theta = \cos x\sinh y
sinθcosx=sinhy\Rightarrow \dfrac{{\sin \theta }}{{\cos x}} = \sinh y
sinhy=sinθcosx\Rightarrow \sinh y = \dfrac{{\sin \theta }}{{\cos x}}
Squaring on both the sides, we will get,
(sinhy)2=(sinθcosx)2\Rightarrow {\left( {\sinh y} \right)^2} = {\left( {\dfrac{{\sin \theta }}{{\cos x}}} \right)^2}
sinh2y=sin2θcos2x\Rightarrow {\sinh ^2}y = \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}x}}

From equation (3), we cos2x=sinh2y{\cos ^2}x = {\sinh ^2}y and so using this in above equation, we will get,
cos2x=sin2θcos2x\Rightarrow {\cos ^2}x = \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}x}}
cos2x(cos2x)=sin2θ\Rightarrow {\cos ^2}x\left( {{{\cos }^2}x} \right) = {\sin ^2}\theta
cos4x=sin2θ\Rightarrow {\cos ^4}x = {\sin ^2}\theta
As we are given, θ\theta being a positive acute angle, sinθ\sin \theta is positive.Taking square root on both sides, we will get,
cos2x=sinθ\Rightarrow {\cos ^2}x = \sin \theta
As x lies between π2 - \dfrac{\pi }{2} to π2\dfrac{\pi }{2}.
Again, taking square root on both the sides, we will get,
cosx=sinθ\Rightarrow \cos x = \sqrt {\sin \theta } ------- (4)
x=cos1(sinθ)\Rightarrow x = {\cos ^{ - 1}}\left( {\sqrt {\sin \theta } } \right)

Also, to get the imaginary part value, we will use the relation from equation (2), and we get,
sinθ=cosxsinhy\sin \theta = \cos x\sinh y
Using equation (4), we will get,
sinθ=sinθsinhy\Rightarrow \sin \theta = \sqrt {\sin \theta } \sinh y
sinhy=sinθsinθ\Rightarrow \sinh y = \dfrac{{\sin \theta }}{{\sqrt {\sin \theta } }}
sinhy=sinθsinθsinθ\Rightarrow \sinh y = \dfrac{{\sqrt {\sin \theta } \sqrt {\sin \theta } }}{{\sqrt {\sin \theta } }} (sinθ=sinθsinθ)\left( {\because \sin \theta = \sqrt {\sin \theta } \sqrt {\sin \theta } } \right)
On simplifying this, we will get,
sinhy=sinθ\Rightarrow \sinh y = \sqrt {\sin \theta }
y=log[sinθ+(1+sinθ)]  \therefore y = log[sin\theta + (1 + sin\theta )]\;

Hence, the separate values of real and imaginary parts are x=cos1(sinθ)x = {\cos ^{ - 1}}\left( {\sqrt {\sin \theta } } \right) and y=log[sinθ+(1+sinθ)]  y = log[sin\theta + (1 + sin\theta )]\; respectively, when θ\theta is a positive acute angle.

Note: In this problem, the important step lies in the determination of the angle θ\theta . As it is given that, θ\theta is an acute angle so we will consider only that value of θ\theta which measures less than 90{90^ \circ }. Also, trigonometry is one of those divisions in mathematics that helps in finding the angles and the missing sides of a triangle too, with the help of trigonometric ratios.