Solveeit Logo

Question

Question: Selenious acid \( \left[ {{H_2}Se{O_3}} \right] \) , a diprotic acid has \( {K_{{a_1}}}{\text{ }} = ...

Selenious acid [H2SeO3]\left[ {{H_2}Se{O_3}} \right] , a diprotic acid has Ka1 = 3.0 × 103{K_{{a_1}}}{\text{ }} = {\text{ }}3.0{\text{ }} \times {\text{ }}{10^{ - 3}} and Ka2 = 5.0 × 108{K_{{a_2}}}{\text{ }} = {\text{ 5}}.0{\text{ }} \times {\text{ }}{10^{ - 8}} What is the [OH]\left[ {O{H^ - }} \right] of a 0.30 M0.30{\text{ M}} solution of a selenious acid?
(i) 2.85 × 103(i){\text{ 2}}{\text{.85 }} \times {\text{ 1}}{{\text{0}}^{ - 3}}
(ii) 5.0 × 106(ii){\text{ 5}}{\text{.0 }} \times {\text{ 1}}{{\text{0}}^{ - 6}}
(iii) 3.5 × 1012(iii){\text{ 3}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^{ - 12}}
(iv) 3.5 × 1013(iv){\text{ 3}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^{ - 13}}

Explanation

Solution

Here we are provided with Ka1{K_{{a_1}}} and Ka2{K_{{a_2}}} for the selenious acid. We can observe that the value of Ka2{K_{{a_2}}} is much smaller than that of Ka1{K_{{a_1}}} . Thus we will write the equilibrium concentration of the selenious acid and with the help of Ka1{K_{{a_1}}} we can find the concentration of [OH]\left[ {O{H^ - }} \right] .
Ionic product of water:
[H+] [OH] = 1014\left[ {{H^ + }} \right]{\text{ }}\left[ {O{H^ - }} \right]{\text{ }} = {\text{ }}{10^{ - 14}} .

Complete answer:
Selenious acid [H2SeO3]\left[ {{H_2}Se{O_3}} \right] produces two hydrogen atoms and thus we are given with Ka1{K_{{a_1}}} and Ka2{K_{{a_2}}} for the selenious acid. But we can observe that the value of Ka1{K_{{a_1}}} is far greater than that of Ka2{K_{{a_2}}} . Therefore we can ignore the dissociation constant Ka2{K_{{a_2}}} . It can be written as:
Since, Ka2Ka1{K_{{a_2}}} \ll {K_{{a_1}}} , hence Ka2{K_{{a_2}}} can be ignored or neglected.
Now the dissociation of [H2SeO3]\left[ {{H_2}Se{O_3}} \right] can be represented as:
H2SeO3HSeO31+H+{H_2}Se{O_3} \rightleftharpoons HSe{O_3}^{ - 1} + {H^ + }
Now it is given that the initial concentration of selenious acid is 0.30 M0.30{\text{ M}} . Let's assume xx concentration of selenious acid is converted into products at equilibrium. It can be represented as:

Time[H2SeO3]\left[ {{H_2}Se{O_3}} \right][HSeO31]\left[ {HSe{O_3}^{ - 1}} \right][H+]\left[ {{H^ + }} \right]
t=0t = 00.300.300000
t=teq.t = {t_{eq.}}0.30x0.30 - xxxxx

Let us assume xx is very less than 0.300.30 , then 0.30x  0.300.30 - x{\text{ }} \approx {\text{ }}0.30 .
Now the dissociation constant can be written as:
Ka1 = [H+] [HSeO31][H2SeO3]{K_{{a_1}}}{\text{ }} = {\text{ }}\dfrac{{\left[ {{H^ + }} \right]{\text{ }}\left[ {HSe{O_3}^{ - 1}} \right]}}{{\left[ {{H_2}Se{O_3}} \right]}}
On substituting the values we get,
3.0 × 103 = x ×x0.30{\text{3}}{\text{.0 }} \times {\text{ 1}}{{\text{0}}^{ - 3}}{\text{ }} = {\text{ }}\dfrac{{x{\text{ }} \times x}}{{0.30}}
x2 = 9 × 104\Rightarrow {x^2}{\text{ }} = {\text{ 9 }} \times {\text{ 1}}{{\text{0}}^{ - 4}}
By taking square root both side it can be solved as:
x = 3 × 102\Rightarrow x{\text{ }} = {\text{ 3 }} \times {\text{ 1}}{{\text{0}}^{ - 2}}
We know that the ionic product of water can be written as:
 [H+] [OH] = 1014\Rightarrow {\text{ }}\left[ {{H^ + }} \right]{\text{ }}\left[ {O{H^ - }} \right]{\text{ }} = {\text{ }}{10^{ - 14}}
 [OH] = 1014[H+]\Rightarrow {\text{ }}\left[ {O{H^ - }} \right]{\text{ }} = {\text{ }}\dfrac{{{{10}^{ - 14}}}}{{\left[ {{H^ + }} \right]}}
On substituting values we get the result as:
 [OH] = 10143 × 102\Rightarrow {\text{ }}\left[ {O{H^ - }} \right]{\text{ }} = {\text{ }}\dfrac{{{{10}^{ - 14}}}}{{3{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 2}}}}
 [OH] = 3.3 × 1013\Rightarrow {\text{ }}\left[ {O{H^ - }} \right]{\text{ }} = {\text{ 3}}{\text{.3 }} \times {\text{ 1}}{{\text{0}}^{ - 13}}
Thus the concentration of [OH]\left[ {O{H^ - }} \right] will be 3.3 × 1013 M{\text{3}}{\text{.3 }} \times {\text{ 1}}{{\text{0}}^{ - 13}}{\text{ M}} . It can be approximated to 3.5 × 1013{\text{3}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^{ - 13}} . Therefore the correct option is (iv) 3.5 × 1013(iv){\text{ 3}}{\text{.5 }} \times {\text{ 1}}{{\text{0}}^{ - 13}} .

Note:
It must be noted that diprotic acids are those acids which can produce two hydrogen ions one after another. Since the value of the second dissociation constant of selenious acid is too small compared to the first dissociation constant, we can neglect it. It would not affect our calculations. Since selenious acid produces hydrogen acid, that’s why we have used an ionic product of water to find the concentration of hydroxide ions.