Solveeit Logo

Question

Question: Select incorrect alternative. A) \( \sin {37^ \circ } = \dfrac{3}{5} \) B) \( \sin {53^ \circ }...

Select incorrect alternative.
A) sin37=35\sin {37^ \circ } = \dfrac{3}{5}
B) sin53=45\sin {53^ \circ } = \dfrac{4}{5}
C) tan37=43\tan {37^ \circ } = \dfrac{4}{3}
D) cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}

Explanation

Solution

Hint : Find the incorrect value in the above given trigonometric functions. Use these formulas to find the incorrect one sinθ=cos(90θ),tanθ=sinθcosθ\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right),\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}

Complete step-by-step answer :
We are given four options and we have to find the incorrect one from them.
(A) sin37=35\sin {37^ \circ } = \dfrac{3}{5}
If a triangle has sides 3, 4, 5 then it is definitely a right angled triangle because the square of 5 is 25 which is equal to square of 3 and 4 which is 16, 9 and one angle of the triangle will be 90 as it is a right triangle and other angles will be 35 and 53 (measure using a protractor).

sinθ=opp.sidehypotenuse\sin \theta = \dfrac{{opp.side}}{{hypotenuse}}
Opposite side of angle 37 is AB and hypotenuse is AC
sin37=ABAC AB=3,AC=5 sin37=35  \sin {37^ \circ } = \dfrac{{AB}}{{AC}} \\\ AB = 3,AC = 5 \\\ \sin {37^ \circ } = \dfrac{3}{5} \\\
Therefore, Option A is correct.
(B) sin53=45\sin {53^ \circ } = \dfrac{4}{5}
We got that sin37=35\sin {37^ \circ } = \dfrac{3}{5} from the first option.
We know that sinθ=cos(90θ)\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)
So
sin37=cos(9037) sin37=cos53=35  \sin {37^ \circ } = \cos \left( {{{90}^ \circ } - {{37}^ \circ }} \right) \\\ \sin {37^ \circ } = \cos {53^ \circ } = \dfrac{3}{5} \\\
By Pythagorean trigonometric identity we have sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
To calculate the value of sin53\sin {53^ \circ } substitute the value of cos53\cos {53^ \circ } in the above identity.
sin253+cos253=1 cos53=35 sin253+(35)2=1 sin253=1(35)2=1925 sin253=25925=1625 sin253=(45)2 sin53=45  {\sin ^2}{53^ \circ } + {\cos ^2}{53^ \circ } = 1 \\\ \cos {53^ \circ } = \dfrac{3}{5} \\\ {\sin ^2}{53^ \circ } + {\left( {\dfrac{3}{5}} \right)^2} = 1 \\\ {\sin ^2}{53^ \circ } = 1 - {\left( {\dfrac{3}{5}} \right)^2} = 1 - \dfrac{9}{{25}} \\\ {\sin ^2}{53^ \circ } = \dfrac{{25 - 9}}{{25}} = \dfrac{{16}}{{25}} \\\ {\sin ^2}{53^ \circ } = {\left( {\dfrac{4}{5}} \right)^2} \\\ \sin {53^ \circ } = \dfrac{4}{5} \\\
Therefore, Option B is also correct.
(C) tan37=43\tan {37^ \circ } = \dfrac{4}{3}
We know that tangent function is the ratio of sine function and cosine function.
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
tan37=sin37cos37\tan {37^ \circ } = \dfrac{{\sin {{37}^ \circ }}}{{\cos {{37}^ \circ }}}
sin37=35\sin {37^ \circ } = \dfrac{3}{5} From the first option.
cosθ=sin(90θ) cos37=sin(9037) cos37=sin(53)  \cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right) \\\ \cos {37^ \circ } = \sin \left( {{{90}^ \circ } - {{37}^ \circ }} \right) \\\ \cos {37^ \circ } = \sin \left( {{{53}^ \circ }} \right) \\\
sin53=45\sin {53^ \circ } = \dfrac{4}{5} From the second option.
Therefore cos37=45\cos {37^ \circ } = \dfrac{4}{5}
tan37=sin37cos37=3545=34\tan {37^ \circ } = \dfrac{{\sin {{37}^ \circ }}}{{\cos {{37}^ \circ }}} = \dfrac{{\dfrac{3}{5}}}{{\dfrac{4}{5}}} = \dfrac{3}{4}
But given that tan37=43\tan {37^ \circ } = \dfrac{4}{3} in the first equation which is incorrect.
Therefore Option C is incorrect.
(D) cos30=32\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}

From the triangle, when the sides are 1, √3, 2 then the angles of the triangle are 30, 60, 90.
cosθ=adj.sidehypotenuse\cos \theta = \dfrac{{adj.side}}{{hypotenuse}}
Adjacent side of angle 30 is BC and the hypotenuse is AC.
cos30=BCAC cos30=BCAC BC=3,AC=2 cos30=32  \cos {30^ \circ } = \dfrac{{BC}}{{AC}} \\\ \cos {30^ \circ } = \dfrac{{BC}}{{AC}} \\\ BC = \sqrt 3 ,AC = 2 \\\ \cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2} \\\
Therefore, Option D is also correct.
Options A, B and D are correct and Option C is incorrect.
So, the correct answer is “Option A,B AND D”.

Note : Trigonometry studies relationships between side lengths and angles. In trigonometry, there are three pairs of co-functions. They are sin-cos, tan-cot, cosec-sec. For these co-functions the value of one co-function of x is equal to the value of other cofunction of 90-x.