Solveeit Logo

Question

Data Science and Artificial Intelligence Question on Linear Algebra

Select all choices that are subspaces of R3\R^3.
Note : R\R denotes the set of real numbers.

A

\left\\{x=\begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} \in \R^3:x=\alpha\begin{bmatrix} 1 \\\ 1 \\\ 0 \end{bmatrix}+\beta\begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix},\alpha,\beta \in \R \right\\}

B

\left\\{x=\begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} \in \R^3:x=\alpha^2\begin{bmatrix} 1 \\\ 1 \\\ 0 \end{bmatrix}+\beta^2\begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix},\alpha,\beta \in \R \right\\}

C

\left\\{x=\begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} \in \R^3:5x_1+2x_3=0,4x_1-2x_2+3x_3=0\right\\}

D

\left\\{x=\begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} \in \R^3:5x_1+2x_3+4-0\right\\}

Answer

\left\\{x=\begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} \in \R^3:x=\alpha\begin{bmatrix} 1 \\\ 1 \\\ 0 \end{bmatrix}+\beta\begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix},\alpha,\beta \in \R \right\\}

Explanation

Solution

The correct option is (A) : \left\\{x=\begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} \in \R^3:x=\alpha\begin{bmatrix} 1 \\\ 1 \\\ 0 \end{bmatrix}+\beta\begin{bmatrix} 1 \\\ 0 \\\ 0 \end{bmatrix},\alpha,\beta \in \R \right\\} and (C) : \left\\{x=\begin{bmatrix} x_1 \\\ x_2 \\\ x_3 \end{bmatrix} \in \R^3:5x_1+2x_3=0,4x_1-2x_2+3x_3=0\right\\}