Solveeit Logo

Question

Question: \(\sec(xe^{x})\tan(xe^{x}) + c\)...

sec(xex)tan(xex)+c\sec(xe^{x})\tan(xe^{x}) + c

A

tan(xex)+c- \tan(xe^{x}) + c

B

cosxxdx=\int_{}^{}\frac{\cos\sqrt{x}}{\sqrt{x}}dx =

C

2cosx+c2\cos\sqrt{x} + c

D

None of these

Answer

cosxxdx=\int_{}^{}\frac{\cos\sqrt{x}}{\sqrt{x}}dx =

Explanation

Solution

secxtanx+x+c- \sec x - \tan x + x + c

Now put dxsin2xcos2x=\int_{}^{}{\frac{dx}{\sin^{2}x\cos^{2}x} =}

then it reduces to

tanx+cotx+c\tan x + \cot x + c.