Question
Question: sec(x+a) cosec(x+b)...
sec(x+a) cosec(x+b)
cos(b−a)tan(x+a)+cot(x+b)
Solution
The given expression is sec(x+a)cosec(x+b). We can rewrite this in terms of sine and cosine: E=cos(x+a)1⋅sin(x+b)1=cos(x+a)sin(x+b)1.
To simplify or rewrite this expression, we can use trigonometric identities. Consider the difference of the arguments in the denominator: (x+b)−(x+a)=b−a. We can write the numerator '1' using the identity for cos(A−B). cos(b−a)=cos((x+b)−(x+a))=cos(x+b)cos(x+a)+sin(x+b)sin(x+a).
Now, let's divide cos(b−a) by the denominator of the original expression, cos(x+a)sin(x+b): cos(x+a)sin(x+b)cos(b−a)=cos(x+a)sin(x+b)cos(x+b)cos(x+a)+sin(x+b)sin(x+a) Split the fraction into two terms: =cos(x+a)sin(x+b)cos(x+b)cos(x+a)+cos(x+a)sin(x+b)sin(x+b)sin(x+a) Cancel the common terms in each fraction: =sin(x+b)cos(x+b)+cos(x+a)sin(x+a) Using the definitions of cotangent and tangent: =cot(x+b)+tan(x+a).
So, we have cos(x+a)sin(x+b)cos(b−a)=cot(x+b)+tan(x+a). We want to find the expression for cos(x+a)sin(x+b)1. Assuming cos(b−a)=0, we can divide both sides by cos(b−a): cos(x+a)sin(x+b)1=cos(b−a)1[cot(x+b)+tan(x+a)].
Thus, sec(x+a)cosec(x+b)=cos(b−a)1[tan(x+a)+cot(x+b)].
This rewrite is valid provided cos(b−a)=0, i.e., b−a=(n+21)π for any integer n. If cos(b−a)=0, then b−a=(n+21)π. In this case, sin(b−a)=sin((n+21)π)=(−1)n=0. In this specific case, b=a+(n+21)π. sin(x+b)=sin(x+a+(n+21)π)=sin((x+a)+2π+nπ)=cos(x+a+nπ)=cos(x+a)cos(nπ)−sin(x+a)sin(nπ)=cos(x+a)(−1)n. The expression becomes sec(x+a)cosec(x+b)=cos(x+a)1(−1)ncos(x+a)1=cos2(x+a)(−1)n=(−1)nsec2(x+a).
However, the form involving tan and cot is the standard way to rewrite this expression in the general case.