Solveeit Logo

Question

Question: sec(x+a) cosec(x+b)...

sec(x+a) cosec(x+b)

Answer

tan(x+a)+cot(x+b)cos(ba)\frac{\tan(x+a) + \cot(x+b)}{\cos(b-a)}

Explanation

Solution

The given expression is sec(x+a)cosec(x+b)\sec(x+a) \operatorname{cosec}(x+b). We can rewrite this in terms of sine and cosine: E=1cos(x+a)1sin(x+b)=1cos(x+a)sin(x+b)E = \frac{1}{\cos(x+a)} \cdot \frac{1}{\sin(x+b)} = \frac{1}{\cos(x+a)\sin(x+b)}.

To simplify or rewrite this expression, we can use trigonometric identities. Consider the difference of the arguments in the denominator: (x+b)(x+a)=ba(x+b) - (x+a) = b-a. We can write the numerator '1' using the identity for cos(AB)\cos(A-B). cos(ba)=cos((x+b)(x+a))=cos(x+b)cos(x+a)+sin(x+b)sin(x+a)\cos(b-a) = \cos((x+b) - (x+a)) = \cos(x+b)\cos(x+a) + \sin(x+b)\sin(x+a).

Now, let's divide cos(ba)\cos(b-a) by the denominator of the original expression, cos(x+a)sin(x+b)\cos(x+a)\sin(x+b): cos(ba)cos(x+a)sin(x+b)=cos(x+b)cos(x+a)+sin(x+b)sin(x+a)cos(x+a)sin(x+b)\frac{\cos(b-a)}{\cos(x+a)\sin(x+b)} = \frac{\cos(x+b)\cos(x+a) + \sin(x+b)\sin(x+a)}{\cos(x+a)\sin(x+b)} Split the fraction into two terms: =cos(x+b)cos(x+a)cos(x+a)sin(x+b)+sin(x+b)sin(x+a)cos(x+a)sin(x+b)= \frac{\cos(x+b)\cos(x+a)}{\cos(x+a)\sin(x+b)} + \frac{\sin(x+b)\sin(x+a)}{\cos(x+a)\sin(x+b)} Cancel the common terms in each fraction: =cos(x+b)sin(x+b)+sin(x+a)cos(x+a)= \frac{\cos(x+b)}{\sin(x+b)} + \frac{\sin(x+a)}{\cos(x+a)} Using the definitions of cotangent and tangent: =cot(x+b)+tan(x+a)= \cot(x+b) + \tan(x+a).

So, we have cos(ba)cos(x+a)sin(x+b)=cot(x+b)+tan(x+a)\frac{\cos(b-a)}{\cos(x+a)\sin(x+b)} = \cot(x+b) + \tan(x+a). We want to find the expression for 1cos(x+a)sin(x+b)\frac{1}{\cos(x+a)\sin(x+b)}. Assuming cos(ba)0\cos(b-a) \neq 0, we can divide both sides by cos(ba)\cos(b-a): 1cos(x+a)sin(x+b)=1cos(ba)[cot(x+b)+tan(x+a)]\frac{1}{\cos(x+a)\sin(x+b)} = \frac{1}{\cos(b-a)} [\cot(x+b) + \tan(x+a)].

Thus, sec(x+a)cosec(x+b)=1cos(ba)[tan(x+a)+cot(x+b)]\sec(x+a) \operatorname{cosec}(x+b) = \frac{1}{\cos(b-a)} [\tan(x+a) + \cot(x+b)].

This rewrite is valid provided cos(ba)0\cos(b-a) \neq 0, i.e., ba(n+12)πb-a \neq (n + \frac{1}{2})\pi for any integer nn. If cos(ba)=0\cos(b-a) = 0, then ba=(n+12)πb-a = (n + \frac{1}{2})\pi. In this case, sin(ba)=sin((n+12)π)=(1)n0\sin(b-a) = \sin((n + \frac{1}{2})\pi) = (-1)^n \neq 0. In this specific case, b=a+(n+12)πb = a + (n + \frac{1}{2})\pi. sin(x+b)=sin(x+a+(n+12)π)=sin((x+a)+π2+nπ)=cos(x+a+nπ)=cos(x+a)cos(nπ)sin(x+a)sin(nπ)=cos(x+a)(1)n\sin(x+b) = \sin(x+a + (n + \frac{1}{2})\pi) = \sin((x+a) + \frac{\pi}{2} + n\pi) = \cos(x+a + n\pi) = \cos(x+a)\cos(n\pi) - \sin(x+a)\sin(n\pi) = \cos(x+a)(-1)^n. The expression becomes sec(x+a)cosec(x+b)=1cos(x+a)1(1)ncos(x+a)=(1)ncos2(x+a)=(1)nsec2(x+a)\sec(x+a) \operatorname{cosec}(x+b) = \frac{1}{\cos(x+a)} \frac{1}{(-1)^n \cos(x+a)} = \frac{(-1)^n}{\cos^2(x+a)} = (-1)^n \sec^2(x+a).

However, the form involving tan\tan and cot\cot is the standard way to rewrite this expression in the general case.