Question
Question: Maximum value of 3 cos θ+ 4 sin $(θ-\frac{π}{6})$...
Maximum value of 3 cos θ+ 4 sin (θ−6π)

A
276
B
213
C
13
D
None of these
Answer
13
Explanation
Solution
Let the given expression be E.
E=3cosθ+4sin(θ−6π)
First, expand sin(θ−6π) using the identity sin(A−B)=sinAcosB−cosAsinB:
sin(θ−6π)=sinθcos6π−cosθsin6π
We know cos6π=23 and sin6π=21.
So, sin(θ−6π)=sinθ⋅23−cosθ⋅21
Substitute this back into the expression for E:
E=3cosθ+4(23sinθ−21cosθ)
E=3cosθ+23sinθ−2cosθ
Combine the cosθ terms:
E=(3−2)cosθ+23sinθ
E=cosθ+23sinθ
The maximum value of an expression of the form acosx+bsinx is a2+b2.
In this case, a=1 and b=23.
Maximum value of E=12+(23)2
Maximum value of E=1+(4×3)
Maximum value of E=1+12
Maximum value of E=13