Solveeit Logo

Question

Question: If the probability that random variable $X$ takes values $x$ is given by $P(X=x)=k(x+1)3^{-x}, x=0,1...

If the probability that random variable XX takes values xx is given by P(X=x)=k(x+1)3x,x=0,1,2,3,P(X=x)=k(x+1)3^{-x}, x=0,1,2,3, \dots, where kk is a constant, then P(X2)P(X \geq 2) is equal to

A

727\frac{7}{27}

B

1118\frac{11}{18}

C

718\frac{7}{18}

D

2027\frac{20}{27}

Answer

727\frac{7}{27}

Explanation

Solution

The sum of probabilities must be 1: x=0P(X=x)=x=0k(x+1)3x=1\sum_{x=0}^{\infty} P(X=x) = \sum_{x=0}^{\infty} k(x+1)3^{-x} = 1. This sum evaluates to k94=1k \cdot \frac{9}{4} = 1, so k=49k = \frac{4}{9}. The probability mass function is P(X=x)=49(x+1)3xP(X=x) = \frac{4}{9}(x+1)3^{-x}. We need P(X2)=1P(X<2)=1(P(X=0)+P(X=1))P(X \geq 2) = 1 - P(X < 2) = 1 - (P(X=0) + P(X=1)). P(X=0)=49P(X=0) = \frac{4}{9} and P(X=1)=827P(X=1) = \frac{8}{27}. Thus, P(X<2)=49+827=2027P(X < 2) = \frac{4}{9} + \frac{8}{27} = \frac{20}{27}. Therefore, P(X2)=12027=727P(X \geq 2) = 1 - \frac{20}{27} = \frac{7}{27}.