Solveeit Logo

Question

Question: If f (x): [1, 3] → [-1,1] satisfies $\int_{1}^{3} f(x)dx = 0$, then the maximum value of $\int_{1}^{...

If f (x): [1, 3] → [-1,1] satisfies 13f(x)dx=0\int_{1}^{3} f(x)dx = 0, then the maximum value of 13f(x)xdx\int_{1}^{3} \frac{f(x)}{x}dx is

A

ln(32\frac{3}{2})

B

ln(43\frac{4}{3})

C

83\frac{8}{3}

D

ln(92\frac{9}{2})

Answer

ln(43\frac{4}{3})

Explanation

Solution

Let I=13f(x)xdxI = \int_{1}^{3} \frac{f(x)}{x}dx. We are given that f(x):[1,3][1,1]f(x): [1, 3] \rightarrow [-1, 1] and 13f(x)dx=0\int_{1}^{3} f(x)dx = 0.
We want to maximize II. The integrand is f(x)x\frac{f(x)}{x}. The term 1x\frac{1}{x} is a positive and decreasing function on the interval [1,3][1, 3]. To maximize the integral, we should make f(x)f(x) as large as possible (i.e., f(x)=1f(x)=1) where 1x\frac{1}{x} is large (i.e., for small values of xx), and f(x)f(x) as small as possible (i.e., f(x)=1f(x)=-1) where 1x\frac{1}{x} is small (i.e., for large values of xx).

This suggests that the maximizing function f(x)f(x) should be of the form:
f(x)=1f(x) = 1 for x[1,a]x \in [1, a]
f(x)=1f(x) = -1 for x(a,3]x \in (a, 3]
for some value a[1,3]a \in [1, 3].

We must satisfy the condition 13f(x)dx=0\int_{1}^{3} f(x)dx = 0.
13f(x)dx=1a1dx+a3(1)dx=[x]1a+[x]a3\int_{1}^{3} f(x)dx = \int_{1}^{a} 1 dx + \int_{a}^{3} (-1) dx = [x]_{1}^{a} + [-x]_{a}^{3}
=(a1)+(3(a))=(a1)+(a3)=2a4= (a - 1) + (-3 - (-a)) = (a - 1) + (a - 3) = 2a - 4.
Setting the integral to 0, we get 2a4=02a - 4 = 0, which implies a=2a = 2.
Since a=2a=2 is in the interval [1,3][1, 3], this function is valid.
The function is f0(x)={1if 1x21if 2<x3f_0(x) = \begin{cases} 1 & \text{if } 1 \le x \le 2 \\ -1 & \text{if } 2 < x \le 3 \end{cases}.
This function satisfies f0(x)[1,1]f_0(x) \in [-1, 1] for all x[1,3]x \in [1, 3] and 13f0(x)dx=0\int_{1}^{3} f_0(x)dx = 0.

Now, let's calculate the value of the integral II for this function f0(x)f_0(x):
I0=13f0(x)xdx=121xdx+231xdxI_0 = \int_{1}^{3} \frac{f_0(x)}{x}dx = \int_{1}^{2} \frac{1}{x}dx + \int_{2}^{3} \frac{-1}{x}dx
I0=[lnx]12[lnx]23I_0 = [\ln|x|]_{1}^{2} - [\ln|x|]_{2}^{3}
I0=(ln2ln1)(ln3ln2)I_0 = (\ln 2 - \ln 1) - (\ln 3 - \ln 2)
I0=(ln20)(ln3ln2)I_0 = (\ln 2 - 0) - (\ln 3 - \ln 2)
I0=ln2ln3+ln2=2ln2ln3=ln(22)ln3=ln4ln3=ln(43)I_0 = \ln 2 - \ln 3 + \ln 2 = 2 \ln 2 - \ln 3 = \ln(2^2) - \ln 3 = \ln 4 - \ln 3 = \ln(\frac{4}{3}).