Question
Question: Sec^8/cosecx integration...
Sec^8/cosecx integration
71sec7x+C
Solution
To integrate the given expression, we first rewrite it in terms of sinx and cosx.
The given expression is cscxsec8x. We know that secx=cosx1 and cscx=sinx1.
Substitute these into the expression: cscxsec8x=sinx1(cosx1)8=sinx1cos8x1=cos8x1⋅sinx=cos8xsinx
Now, we need to find the integral of cos8xsinx: I=∫cos8xsinxdx
We can solve this integral using the substitution method. Let u=cosx. Differentiating both sides with respect to x: dxdu=−sinx du=−sinxdx So, sinxdx=−du.
Substitute u and du into the integral: I=∫u8−du=−∫u−8du
Now, integrate u−8 using the power rule for integration, ∫xndx=n+1xn+1+C: I=−(−8+1u−8+1)+C I=−(−7u−7)+C I=71u−7+C
Finally, substitute back u=cosx: I=71(cosx)−7+C I=7cos7x1+C Since cosx1=secx, we can write: I=71sec7x+C
The final answer is 71sec7x+C.
Explanation of the solution:
- Rewrite the integrand cscxsec8x as cos8xsinx using secx=1/cosx and cscx=1/sinx.
- Use substitution: Let u=cosx, so du=−sinxdx.
- Substitute into the integral: ∫u8−du=−∫u−8du.
- Integrate using the power rule: −−7u−7+C=71u−7+C.
- Substitute back u=cosx to get 71(cosx)−7+C=71sec7x+C.
Answer:
The integration of cscxsec8x is 71sec7x+C.