Solveeit Logo

Question

Question: Sec^8/cosecx integration...

Sec^8/cosecx integration

Answer

17sec7x+C\frac{1}{7} \sec^7 x + C

Explanation

Solution

To integrate the given expression, we first rewrite it in terms of sinx\sin x and cosx\cos x.

The given expression is sec8xcscx\frac{\sec^8 x}{\csc x}. We know that secx=1cosx\sec x = \frac{1}{\cos x} and cscx=1sinx\csc x = \frac{1}{\sin x}.

Substitute these into the expression: sec8xcscx=(1cosx)81sinx=1cos8x1sinx=1cos8xsinx=sinxcos8x\frac{\sec^8 x}{\csc x} = \frac{\left(\frac{1}{\cos x}\right)^8}{\frac{1}{\sin x}} = \frac{\frac{1}{\cos^8 x}}{\frac{1}{\sin x}} = \frac{1}{\cos^8 x} \cdot \sin x = \frac{\sin x}{\cos^8 x}

Now, we need to find the integral of sinxcos8x\frac{\sin x}{\cos^8 x}: I=sinxcos8xdxI = \int \frac{\sin x}{\cos^8 x} dx

We can solve this integral using the substitution method. Let u=cosxu = \cos x. Differentiating both sides with respect to xx: dudx=sinx\frac{du}{dx} = -\sin x du=sinxdxdu = -\sin x \, dx So, sinxdx=du\sin x \, dx = -du.

Substitute uu and dudu into the integral: I=duu8=u8duI = \int \frac{-du}{u^8} = -\int u^{-8} du

Now, integrate u8u^{-8} using the power rule for integration, xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C: I=(u8+18+1)+CI = -\left( \frac{u^{-8+1}}{-8+1} \right) + C I=(u77)+CI = -\left( \frac{u^{-7}}{-7} \right) + C I=17u7+CI = \frac{1}{7} u^{-7} + C

Finally, substitute back u=cosxu = \cos x: I=17(cosx)7+CI = \frac{1}{7} (\cos x)^{-7} + C I=17cos7x+CI = \frac{1}{7 \cos^7 x} + C Since 1cosx=secx\frac{1}{\cos x} = \sec x, we can write: I=17sec7x+CI = \frac{1}{7} \sec^7 x + C

The final answer is 17sec7x+C\boxed{\frac{1}{7} \sec^7 x + C}.

Explanation of the solution:

  1. Rewrite the integrand sec8xcscx\frac{\sec^8 x}{\csc x} as sinxcos8x\frac{\sin x}{\cos^8 x} using secx=1/cosx\sec x = 1/\cos x and cscx=1/sinx\csc x = 1/\sin x.
  2. Use substitution: Let u=cosxu = \cos x, so du=sinxdxdu = -\sin x \, dx.
  3. Substitute into the integral: duu8=u8du\int \frac{-du}{u^8} = -\int u^{-8} du.
  4. Integrate using the power rule: u77+C=17u7+C-\frac{u^{-7}}{-7} + C = \frac{1}{7} u^{-7} + C.
  5. Substitute back u=cosxu = \cos x to get 17(cosx)7+C=17sec7x+C\frac{1}{7} (\cos x)^{-7} + C = \frac{1}{7} \sec^7 x + C.

Answer:

The integration of sec8xcscx\frac{\sec^8 x}{\csc x} is 17sec7x+C\frac{1}{7} \sec^7 x + C.