Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

(secθ+tanθ)(1sinθ)(\sec \theta + \tan \theta)(1 - \sin \theta) is equal to:

A

secθ\sec \theta

B

sinθ\sin \theta

C

cosecθ\cosec \theta

D

cosθ\cos \theta

Answer

cosθ\cos \theta

Explanation

Solution

Simplify the expression:
(secθ+tanθ)(1sinθ)(\sec \theta + \tan \theta)(1 - \sin \theta)
Substitute secθ=1cosθ\sec \theta = \frac{1}{\cos \theta} and tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta}:
1+sinθcosθ(1sinθ)\frac{1 + \sin \theta}{\cos \theta}(1 - \sin \theta)
Simplify further using the identity:
(1+sinθ)(1sinθ)cosθ=1sin2θcosθ\frac{(1 + \sin \theta)(1 - \sin \theta)}{\cos \theta} = \frac{1 - \sin^2 \theta}{\cos \theta}
=cos2θcosθ=cosθ= \frac{\cos^2 \theta}{\cos \theta} = \cos \theta