Solveeit Logo

Question

Question: \[{\sec ^{ - 1}}x + {\tan ^{ - 1}}x\] is real if \[x \in ( - \infty , - a] \cup [b,\infty ).\] Find ...

sec1x+tan1x{\sec ^{ - 1}}x + {\tan ^{ - 1}}x is real if x(,a][b,).x \in ( - \infty , - a] \cup [b,\infty ). Find the value of a+ba + b.
A. 1 - 1
B. 0
C. 1
D. 2

Explanation

Solution

In this question, we will proceed by converting the inverse function of secant into inverse function of tangent by using the formula sec1x=tan1x21{\sec ^{ - 1}}x = {\tan ^{ - 1}}\sqrt {{x^2} - 1} . Further compare the values for xx to be real to get the required value of the solution.

Complete step-by-step answer:
Given that sec1x+tan1x{\sec ^{ - 1}}x + {\tan ^{ - 1}}x is real if x(,a][b,).x \in ( - \infty , - a] \cup [b,\infty ).
We know that sec1x=tan1x21{\sec ^{ - 1}}x = {\tan ^{ - 1}}\sqrt {{x^2} - 1}
Substituting sec1x=tan1x21{\sec ^{ - 1}}x = {\tan ^{ - 1}}\sqrt {{x^2} - 1} in sec1x+tan1x{\sec ^{ - 1}}x + {\tan ^{ - 1}}x, we get
sec1x+tan1x=tan1x+tan1x21\Rightarrow {\sec ^{ - 1}}x + {\tan ^{ - 1}}x = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\sqrt {{x^2} - 1}
Since the value of sec1x+tan1x{\sec ^{ - 1}}x + {\tan ^{ - 1}}x is real, the value of tan1x+tan1x21{\tan ^{ - 1}}x + {\tan ^{ - 1}}\sqrt {{x^2} - 1} is also real.
We get real values of tan1x+tan1x21{\tan ^{ - 1}}x + {\tan ^{ - 1}}\sqrt {{x^2} - 1} if and only if x210\sqrt {{x^2} - 1} \geqslant 0.
So, consider the values of x210\sqrt {{x^2} - 1} \geqslant 0
x210\Rightarrow \sqrt {{x^2} - 1} \geqslant 0
Squaring on both sides, we get

(x21)202 x210 x21  \Rightarrow {\left( {\sqrt {{x^2} - 1} } \right)^2} \geqslant {0^2} \\\ \Rightarrow {x^2} - 1 \geqslant 0 \\\ \Rightarrow {x^2} \geqslant 1 \\\

Rooting on both sides, we get

x21 x1  \Rightarrow \sqrt {{x^2}} \geqslant \sqrt 1 \\\ \Rightarrow \left| x \right| \geqslant 1 \\\

We know if xa\left| x \right| \geqslant a then x(,a][a,)x \in ( - \infty , - a] \cup [a,\infty ).
So, we have x1\left| x \right| \geqslant 1 as x(,1][1,)x \in ( - \infty , - 1] \cup [1,\infty ).
By comparing x(,1][1,)x \in ( - \infty , - 1] \cup [1,\infty ) and x(,a][b,)x \in ( - \infty , - a] \cup [b,\infty ), we have a=1a = 1 and b=1b = 1.
Now, consider the value of a+ba + b i.e., a+b=1+1=2a + b = 1 + 1 = 2.
Therefore, the value of a+ba + b is 2.

Thus, the correct option is D. 2

Note:
To solve these kinds of problems, remember the formulae of inverse trigonometry and the conversions of inequalities. Some of the important inequality conversions are
1. If x1\left| x \right| \geqslant 1 then x(,1][1,)x \in ( - \infty , - 1] \cup [1,\infty )
2. If axba \leqslant x \leqslant b then x[a,b]x \in \left[ {a,b} \right]
3. If a<xba < x \leqslant b then x(a,b]x \in (a,b]
4. If ax<ba \leqslant x < b then x[a,b)x \in [a,b)
5. If a<x<ba < x < b then x(a,b)x \in \left( {a,b} \right)