Solveeit Logo

Question

Question: Sea Water is found to contain 5.85% NaCl and 9.50% MgCl2 by weight of solution . Calculate its norma...

Sea Water is found to contain 5.85% NaCl and 9.50% MgCl2 by weight of solution . Calculate its normal boiling point assuming 80% ionisation for NaCl and 50% ionisation for MgCl2

Answer

102.3 °C

Explanation

Solution

To calculate the normal boiling point of the sea water solution, we need to consider the colligative properties, specifically the boiling point elevation. Here's a step-by-step breakdown:

  1. Calculate the mass of water: Assuming 100 g of solution, the mass of water is 1005.859.50=84.65100 - 5.85 - 9.50 = 84.65 g, which is 0.08465 kg.

  2. Calculate the moles of NaCl and MgCl2_2:

    • Moles of NaCl: 5.85 g58.5 g/mol=0.1 mol\frac{5.85 \text{ g}}{58.5 \text{ g/mol}} = 0.1 \text{ mol}
    • Moles of MgCl2_2: 9.50 g95.0 g/mol=0.1 mol\frac{9.50 \text{ g}}{95.0 \text{ g/mol}} = 0.1 \text{ mol}
  3. Calculate the van't Hoff factor (ii) for each solute:

    • For NaCl (dissociates into 2 ions): iNaCl=1+0.80(21)=1.80i_{\text{NaCl}} = 1 + 0.80(2-1) = 1.80
    • For MgCl2_2 (dissociates into 3 ions): iMgCl2=1+0.50(31)=2.00i_{\text{MgCl}_2} = 1 + 0.50(3-1) = 2.00
  4. Calculate the effective moles of particles:

    • Effective moles from NaCl: 0.1 mol×1.80=0.18 mol0.1 \text{ mol} \times 1.80 = 0.18 \text{ mol}
    • Effective moles from MgCl2_2: 0.1 mol×2.00=0.20 mol0.1 \text{ mol} \times 2.00 = 0.20 \text{ mol}
  5. Calculate the total effective moles of solute particles:

    • Total effective moles: 0.18 mol+0.20 mol=0.38 mol0.18 \text{ mol} + 0.20 \text{ mol} = 0.38 \text{ mol}
  6. Calculate the molality (mm) of the solution:

    • Molality: 0.38 mol0.08465 kg4.489 mol/kg\frac{0.38 \text{ mol}}{0.08465 \text{ kg}} \approx 4.489 \text{ mol/kg}
  7. Calculate the boiling point elevation (ΔTb\Delta T_b):

    • Using Kb=0.51 C kg/molK_b = 0.51 \text{ }^\circ\text{C kg/mol} for water: ΔTb=0.51 C kg/mol×4.489 mol/kg2.289 C\Delta T_b = 0.51 \text{ }^\circ\text{C kg/mol} \times 4.489 \text{ mol/kg} \approx 2.289 \text{ }^\circ\text{C}
  8. Calculate the normal boiling point of the solution:

    • Tb=100.0 C+2.289 C102.289 CT_b = 100.0 \text{ }^\circ\text{C} + 2.289 \text{ }^\circ\text{C} \approx 102.289 \text{ }^\circ\text{C}

Rounding to one decimal place, the normal boiling point is approximately 102.3 C102.3 \text{ }^\circ\text{C}.