Solveeit Logo

Question

Question: Scientists have made a light source whose spectral emissive power $\frac{dI}{d\lambda}$ is constant ...

Scientists have made a light source whose spectral emissive power dIdλ\frac{dI}{d\lambda} is constant over visible range. Here I is intensity and λ\lambda is wavelength .In other words, dIdλ\frac{dI}{d\lambda} graph is shown below. This beam of area 1m21m^2 is incident on emitter plate of photoelectric tube. The collector plate is sufficiently positive so that tube is in saturation mode. Assume that each capable photon liberates 1 electron. If work function is 2eV, what is the current (in A) the tube? Round off to nearest integer. (hc=1240 eVnmhc = 1240 \text{ eVnm})

Answer

3

Explanation

Solution

The spectral emissive power is given by dIdλ=0.031 W/m2×nm\frac{dI}{d\lambda} = 0.031 \text{ W/m}^2 \times \text{nm} for 400 nmλ700 nm400 \text{ nm} \le \lambda \le 700 \text{ nm}, and 0 otherwise. The work function is ϕ=2 eV\phi = 2 \text{ eV}. The energy of a photon with wavelength λ\lambda is E=hcλE = \frac{hc}{\lambda}. For photoelectric emission, the photon energy must be greater than or equal to the work function: EϕE \ge \phi. hcλϕ    λhcϕ\frac{hc}{\lambda} \ge \phi \implies \lambda \le \frac{hc}{\phi}. Given hc=1240 eVnmhc = 1240 \text{ eVnm} and ϕ=2 eV\phi = 2 \text{ eV}, the maximum wavelength for photoelectric emission is λmax=1240 eVnm2 eV=620 nm\lambda_{max} = \frac{1240 \text{ eVnm}}{2 \text{ eV}} = 620 \text{ nm}. The light source emits photons in the range 400 nmλ700 nm400 \text{ nm} \le \lambda \le 700 \text{ nm}. Therefore, the capable photons are those with wavelengths in the range 400 nmλ620 nm400 \text{ nm} \le \lambda \le 620 \text{ nm}.

The intensity of capable photons is Icapable=400 nm620 nmdIdλdλ=4006200.031dλ=0.031×(620400)=0.031×220=6.82 W/m2I_{capable} = \int_{400 \text{ nm}}^{620 \text{ nm}} \frac{dI}{d\lambda} d\lambda = \int_{400}^{620} 0.031 d\lambda = 0.031 \times (620 - 400) = 0.031 \times 220 = 6.82 \text{ W/m}^2. The total power of capable photons incident on the emitter plate is Pcapable=Icapable×Area=6.82 W/m2×1 m2=6.82 WP_{capable} = I_{capable} \times \text{Area} = 6.82 \text{ W/m}^2 \times 1 \text{ m}^2 = 6.82 \text{ W}.

The number of photons with wavelengths between λ\lambda and λ+dλ\lambda + d\lambda incident per unit area per unit time is dN=dIdλdλE=dIdλdλhc/λ=dIdλλhcdλdN' = \frac{dI}{d\lambda} \frac{d\lambda}{E} = \frac{dI}{d\lambda} \frac{d\lambda}{hc/\lambda} = \frac{dI}{d\lambda} \frac{\lambda}{hc} d\lambda. The number of capable photons incident per second on the area AA is Ncapable=A400620dIdλλhcdλN_{capable} = A \int_{400}^{620} \frac{dI}{d\lambda} \frac{\lambda}{hc} d\lambda. Given A=1 m2A = 1 \text{ m}^2, dIdλ=0.031 W/m2×nm\frac{dI}{d\lambda} = 0.031 \text{ W/m}^2 \times \text{nm}, hc=1240 eVnmhc = 1240 \text{ eVnm}. We need to convert W to J/s and eV to J. 1 W=1 J/s1 \text{ W} = 1 \text{ J/s}, 1 eV=1.602×1019 J1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}. hc=1240 eVnm=1240×1.602×1019 Jnm=1.98648×1016 Jnmhc = 1240 \text{ eVnm} = 1240 \times 1.602 \times 10^{-19} \text{ Jnm} = 1.98648 \times 10^{-16} \text{ Jnm}. dIdλ=0.031 J/s/m2×nm\frac{dI}{d\lambda} = 0.031 \text{ J/s/m}^2 \times \text{nm}. Ncapable=(1 m2)400 nm620 nm(0.031 J/s/m2×nm)λ nm1.98648×1016 Jnmdλ (in nm)N_{capable} = (1 \text{ m}^2) \int_{400 \text{ nm}}^{620 \text{ nm}} (0.031 \text{ J/s/m}^2 \times \text{nm}) \frac{\lambda \text{ nm}}{1.98648 \times 10^{-16} \text{ Jnm}} d\lambda \text{ (in nm)}. Ncapable=0.0311.98648×1016400620λdλ s1N_{capable} = \frac{0.031}{1.98648 \times 10^{-16}} \int_{400}^{620} \lambda d\lambda \text{ s}^{-1}. 400620λdλ=[λ22]400620=620240022=3844001600002=2244002=112200\int_{400}^{620} \lambda d\lambda = [\frac{\lambda^2}{2}]_{400}^{620} = \frac{620^2 - 400^2}{2} = \frac{384400 - 160000}{2} = \frac{224400}{2} = 112200. Ncapable=0.0311.98648×1016×1122001.751×1019 s1N_{capable} = \frac{0.031}{1.98648 \times 10^{-16}} \times 112200 \approx 1.751 \times 10^{19} \text{ s}^{-1}. Since each capable photon liberates 1 electron, the number of electrons emitted per second is equal to NcapableN_{capable}. The current is I=Ncapable×e=(1.751×1019 s1)×(1.602×1019 C)I = N_{capable} \times e = (1.751 \times 10^{19} \text{ s}^{-1}) \times (1.602 \times 10^{-19} \text{ C}). I1.751×1.602 A2.805 AI \approx 1.751 \times 1.602 \text{ A} \approx 2.805 \text{ A}. Rounding off to the nearest integer, the current is 3 A3 \text{ A}.