Solveeit Logo

Question

Chemistry Question on Structure of atom

Schrodinger wave equation, for a particle in a one dimension box is

A

δ2Ψδx2+2mh(E)Ψ=0\frac{\delta^{2}\Psi}{\delta x^{2}} + \frac{2m}{h} \left(E-\infty\right)\Psi =0

B

δ2Ψδx2+8π2mh2(EV)=0\frac{\delta^{2}\Psi}{\delta x^{2}} + \frac{8\pi^{2}m}{h^{2}} \left(E-V\right) =0

C

δ2Ψδx2+2mh(EV)φ=0\frac{\delta^{2}\Psi}{\delta x^{2}} + \frac{2m}{h} \left(E-V\right)\varphi =0

D

δ2Ψδx2+8π2mh2(E)=0\frac{\delta^{2}\Psi}{\delta x^{2}} + \frac{8\pi^{2}m}{h^{2}} \left(E-\infty\right) =0

Answer

δ2Ψδx2+2mh(E)Ψ=0\frac{\delta^{2}\Psi}{\delta x^{2}} + \frac{2m}{h} \left(E-\infty\right)\Psi =0

Explanation

Solution

Schiodinger wave equation for a particle in 1D1 - D box is given as 2Ψx2+2mh(E)Ψ=0\frac{\partial^{2}\Psi}{\partial x^{2}} + \frac{2m}{h} \left(E -\infty\right)\Psi = 0 where, Psi=|Psi = wave function E=E = total energy of a particle