Solveeit Logo

Question

Question: The number of solutions that the equation $\sin 5\theta \cos 3\theta = \sin 9\theta \cos 7\theta$ ha...

The number of solutions that the equation sin5θcos3θ=sin9θcos7θ\sin 5\theta \cos 3\theta = \sin 9\theta \cos 7\theta has in [0,π4]\left[0, \frac{\pi}{4}\right]

Answer

5

Explanation

Solution

Solution:

Given the equation

sin5θcos3θ=sin9θcos7θ,\sin5\theta \cos3\theta = \sin9\theta \cos7\theta,

apply the identity

sinAcosB=12[sin(A+B)+sin(AB)].\sin A \cos B = \frac{1}{2}\left[\sin(A+B) + \sin(A-B)\right].

Thus,

sin5θcos3θ=12[sin(8θ)+sin(2θ)]\sin5\theta \cos3\theta = \frac{1}{2}\left[\sin(8\theta) + \sin(2\theta)\right]

and

sin9θcos7θ=12[sin(16θ)+sin(2θ)].\sin9\theta \cos7\theta = \frac{1}{2}\left[\sin(16\theta) + \sin(2\theta)\right].

Cancelling 12\frac{1}{2} and sin(2θ)\sin(2\theta) from both sides, we have:

sin(8θ)=sin(16θ).\sin(8\theta)=\sin(16\theta).

Recall that sina=sinb\sin a=\sin b if either:

  1. a=b+2πka = b + 2\pi k, or
  2. a=πb+2πka = \pi - b + 2\pi k, for any integer kk.

Case 1: 8θ=16θ+2πk8\theta = 16\theta + 2\pi k

8θ16θ=2πk8θ=2πkθ=kπ4.8\theta - 16\theta = 2\pi k \quad \Rightarrow \quad -8\theta = 2\pi k \quad \Rightarrow \quad \theta = -\frac{k\pi}{4}.

We need θ[0,π4]\theta \in \left[0, \frac{\pi}{4}\right]. Thus:

  • For k=0k=0: θ=0\theta=0,
  • For k=1k=-1: θ=π4\theta=\frac{\pi}{4}.

Case 2: 8θ=π16θ+2πk8\theta = \pi - 16\theta + 2\pi k

8θ+16θ=π+2πk24θ=π(1+2k)θ=π(1+2k)24.8\theta + 16\theta = \pi + 2\pi k \quad \Rightarrow \quad 24\theta = \pi(1+2k) \quad \Rightarrow \quad \theta = \frac{\pi(1+2k)}{24}.

Again, for θ[0,π4]\theta \in \left[0, \frac{\pi}{4}\right] (i.e. θπ4=6π24\theta \le \frac{\pi}{4}=\frac{6\pi}{24}):

0π(1+2k)24π401+2k6.0 \le \frac{\pi(1+2k)}{24} \le \frac{\pi}{4} \quad \Rightarrow \quad 0 \le 1+2k \le 6.

Solve for integer kk:

  • For k=0k=0: 1+0=11+0=1θ=π24\theta=\frac{\pi}{24},
  • For k=1k=1: 1+2=31+2=3θ=3π24=π8\theta=\frac{3\pi}{24}=\frac{\pi}{8},
  • For k=2k=2: 1+4=51+4=5θ=5π24\theta=\frac{5\pi}{24}.

These three solutions do not duplicate the ones from Case 1.

Total number of solutions: 22 (from Case 1) +3+ 3 (from Case 2) =5= 5.


Explanation (minimal):

  • Express both products using sinAcosB\sin A \cos B identity.
  • Cancel common terms to get sin8θ=sin16θ\sin 8\theta = \sin 16\theta.
  • Solve using sina=sinb\sin a = \sin b conditions.
  • Count all solutions in [0,π4]\left[0, \frac{\pi}{4}\right].