Question
Question: The number of solutions that the equation $\sin 5\theta \cos 3\theta = \sin 9\theta \cos 7\theta$ ha...
The number of solutions that the equation sin5θcos3θ=sin9θcos7θ has in [0,4π]
Answer
5
Explanation
Solution
Solution:
Given the equation
sin5θcos3θ=sin9θcos7θ,apply the identity
sinAcosB=21[sin(A+B)+sin(A−B)].Thus,
sin5θcos3θ=21[sin(8θ)+sin(2θ)]and
sin9θcos7θ=21[sin(16θ)+sin(2θ)].Cancelling 21 and sin(2θ) from both sides, we have:
sin(8θ)=sin(16θ).Recall that sina=sinb if either:
- a=b+2πk, or
- a=π−b+2πk, for any integer k.
Case 1: 8θ=16θ+2πk
8θ−16θ=2πk⇒−8θ=2πk⇒θ=−4kπ.We need θ∈[0,4π]. Thus:
- For k=0: θ=0,
- For k=−1: θ=4π.
Case 2: 8θ=π−16θ+2πk
8θ+16θ=π+2πk⇒24θ=π(1+2k)⇒θ=24π(1+2k).Again, for θ∈[0,4π] (i.e. θ≤4π=246π):
0≤24π(1+2k)≤4π⇒0≤1+2k≤6.Solve for integer k:
- For k=0: 1+0=1 ⇒ θ=24π,
- For k=1: 1+2=3 ⇒ θ=243π=8π,
- For k=2: 1+4=5 ⇒ θ=245π.
These three solutions do not duplicate the ones from Case 1.
Total number of solutions: 2 (from Case 1) +3 (from Case 2) =5.
Explanation (minimal):
- Express both products using sinAcosB identity.
- Cancel common terms to get sin8θ=sin16θ.
- Solve using sina=sinb conditions.
- Count all solutions in [0,4π].