Solveeit Logo

Question

Question: Saturated solution $Co_2[Fe(CN)_6]$ is taken in an electrolytic cell of cell constant 0.3 $cm^{-1}$....

Saturated solution Co2[Fe(CN)6]Co_2[Fe(CN)_6] is taken in an electrolytic cell of cell constant 0.3 cm1cm^{-1}. If conductivity of saturated solution of Co2[Fe(CN)6]Co_2[Fe(CN)_6] & water used to make solution is 2.2×106Scm12.2 \times 10^{-6} S cm^{-1} and 4×107Scm14 \times 10^{-7} S cm^{-1} respectively, & molar conductance of Co+2Co^{+2} & [Fe(CN)6]4[Fe(CN)_6]^{-4} ions are 80 Scm2mol1S cm^2 mol^{-1} & 440 Scm2mol1S cm^2 mol^{-1} respectively then

A

Solubility of Co2[Fe(CN)6]Co_2[Fe(CN)_6] is 3×1063 \times 10^{-6} mole/dm3mole/dm^3

B

Ksp of Co2[Fe(CN)6]Co_2[Fe(CN)_6] is 1.08×10161.08 \times 10^{-16} mole3/dm9mole^3/dm^9

C

Ionic mobility of Co+2Co^{+2} of this solution increases on increasing potential difference across the terminal of the cell.

D

On increasing temperature conductivity of this solution increases.

Answer

Solubility of Co2[Fe(CN)6]Co_2[Fe(CN)_6] is 3×1063 \times 10^{-6} mole/dm3mole/dm^3, Ksp of Co2[Fe(CN)6]Co_2[Fe(CN)_6] is 1.08×10161.08 \times 10^{-16} mole3/dm9mole^3/dm^9, On increasing temperature conductivity of this solution increases.

Explanation

Solution

The conductivity of the saturated solution of Co2[Fe(CN)6]Co_2[Fe(CN)_6] is κsol=2.2×106Scm1\kappa_{sol} = 2.2 \times 10^{-6} \, S \, cm^{-1}.

The conductivity of water is κwater=4×107Scm1\kappa_{water} = 4 \times 10^{-7} \, S \, cm^{-1}.

The conductivity due to the dissolved salt Co2[Fe(CN)6]Co_2[Fe(CN)_6] is κsalt=κsolκwater=2.2×1060.4×106=1.8×106Scm1\kappa_{salt} = \kappa_{sol} - \kappa_{water} = 2.2 \times 10^{-6} - 0.4 \times 10^{-6} = 1.8 \times 10^{-6} \, S \, cm^{-1}.

The molar conductance of Co+2Co^{+2} is λm(Co+2)=80Scm2mol1\lambda_{m}(Co^{+2}) = 80 \, S \, cm^2 \, mol^{-1}.

The molar conductance of [Fe(CN)6]4[Fe(CN)_6]^{-4} is λm([Fe(CN)6]4)=440Scm2mol1\lambda_{m}([Fe(CN)_6]^{-4}) = 440 \, S \, cm^2 \, mol^{-1}.

The dissociation of Co2[Fe(CN)6]Co_2[Fe(CN)_6] is Co2[Fe(CN)6](s)2Co+2(aq)+[Fe(CN)6]4(aq)Co_2[Fe(CN)_6](s) \rightleftharpoons 2Co^{+2}(aq) + [Fe(CN)_6]^{-4}(aq).

The molar conductivity of Co2[Fe(CN)6]Co_2[Fe(CN)_6] at infinite dilution (which is assumed for a saturated solution of a sparingly soluble salt) is given by Kohlrausch's Law: Λm(Co2[Fe(CN)6])=2×λm(Co+2)+1×λm([Fe(CN)6]4)\Lambda_m(Co_2[Fe(CN)_6]) = 2 \times \lambda_m(Co^{+2}) + 1 \times \lambda_m([Fe(CN)_6]^{-4}) Λm=2×80Scm2mol1+440Scm2mol1=160+440=600Scm2mol1\Lambda_m = 2 \times 80 \, S \, cm^2 \, mol^{-1} + 440 \, S \, cm^2 \, mol^{-1} = 160 + 440 = 600 \, S \, cm^2 \, mol^{-1}.

Let SS be the solubility of Co2[Fe(CN)6]Co_2[Fe(CN)_6] in mol/dm3mol/dm^3 (or mol/Lmol/L). The concentration of the salt in the saturated solution is SS.

The relationship between conductivity, molar conductivity, and concentration is κ=Λm×C\kappa = \Lambda_m \times C.

We need to be consistent with units. If κ\kappa is in Scm1S \, cm^{-1} and Λm\Lambda_m is in Scm2mol1S \, cm^2 \, mol^{-1}, the concentration CC must be in mol/cm3mol/cm^3.

1dm3=1000cm31 \, dm^3 = 1000 \, cm^3, so Smol/dm3=S/1000mol/cm3S \, mol/dm^3 = S/1000 \, mol/cm^3.

κsalt=Λm×S1000\kappa_{salt} = \Lambda_m \times \frac{S}{1000} 1.8×106Scm1=600Scm2mol1×S1000mol/cm31.8 \times 10^{-6} \, S \, cm^{-1} = 600 \, S \, cm^2 \, mol^{-1} \times \frac{S}{1000} \, mol/cm^3 1.8×106=0.6×S1.8 \times 10^{-6} = 0.6 \times S S=1.8×1060.6=3×106mol/dm3S = \frac{1.8 \times 10^{-6}}{0.6} = 3 \times 10^{-6} \, mol/dm^3.

Statement 1: Solubility of Co2[Fe(CN)6]Co_2[Fe(CN)_6] is 3×1063 \times 10^{-6} mole/dm3mole/dm^3. This is true based on our calculation.

Statement 2: Ksp of Co2[Fe(CN)6]Co_2[Fe(CN)_6] is 1.08×10161.08 \times 10^{-16} mole3/dm9mole^3/dm^9. For the equilibrium Co2[Fe(CN)6](s)2Co+2(aq)+[Fe(CN)6]4(aq)Co_2[Fe(CN)_6](s) \rightleftharpoons 2Co^{+2}(aq) + [Fe(CN)_6]^{-4}(aq), if the solubility is SS, the concentrations are [Co+2]=2S[Co^{+2}] = 2S and [Fe(CN)6]4]=S[Fe(CN)_6]^{-4}] = S. Ksp=[Co+2]2[[Fe(CN)6]4]=(2S)2(S)=4S3Ksp = [Co^{+2}]^2 [[Fe(CN)_6]^{-4}] = (2S)^2 (S) = 4S^3. Using S=3×106mol/dm3S = 3 \times 10^{-6} \, mol/dm^3: Ksp=4×(3×106)3=4×(27×1018)=108×1018=1.08×1016(mol/dm3)3Ksp = 4 \times (3 \times 10^{-6})^3 = 4 \times (27 \times 10^{-18}) = 108 \times 10^{-18} = 1.08 \times 10^{-16} \, (mol/dm^3)^3. Statement 2 is true.

Statement 3: Ionic mobility of Co+2Co^{+2} of this solution increases on increasing potential difference across the terminal of the cell. Ionic mobility is defined as the drift velocity of an ion per unit electric field strength. It is a property of the ion, solvent, temperature, and pressure. Under normal conditions, ionic mobility is independent of the applied electric field or potential difference. Increasing the potential difference increases the electric field, which increases the drift velocity, but the ratio (mobility) remains constant. Statement 3 is false.

Statement 4: On increasing temperature conductivity of this solution increases. The conductivity of electrolytic solutions generally increases with increasing temperature. This is because the viscosity of the solvent decreases, and the kinetic energy and mobility of ions increase. For sparingly soluble salts, solubility also typically increases with temperature, leading to a higher concentration of ions. All these factors contribute to increased conductivity. Statement 4 is true.