Solveeit Logo

Question

Question: Sample of $Al_2O_3$ in a molten fluoride bath is electrolysed using a current of 1.55 amperes using ...

Sample of Al2O3Al_2O_3 in a molten fluoride bath is electrolysed using a current of 1.55 amperes using graphite rods. Oxygen liberated at anode forms x g CO2CO_2 in 2 hours. Find x (report to nearest integer), if current efficiency is 80%

Answer

1

Explanation

Solution

The problem involves the electrolysis of Al2O3Al_2O_3 using graphite anodes, where oxygen liberated reacts with the anode to form CO2CO_2. We need to calculate the mass of CO2CO_2 formed considering the current efficiency.

1. Anode Reaction: During the electrolysis of molten Al2O3Al_2O_3 using graphite (carbon) anodes, oxygen ions (O2O^{2-}) from Al2O3Al_2O_3 migrate to the anode and react with carbon to form carbon dioxide. The reaction at the anode is: C(s)+2O2(melt)CO2(g)+4eC(s) + 2O^{2-}(melt) \rightarrow CO_2(g) + 4e^- This equation shows that 4 moles of electrons are required to produce 1 mole of CO2CO_2.

2. Calculate Total Charge Passed (Q): Given current (I) = 1.55 amperes Given time (t) = 2 hours Convert time to seconds: t=2 hours×60 min/hour×60 s/min=7200 st = 2 \text{ hours} \times 60 \text{ min/hour} \times 60 \text{ s/min} = 7200 \text{ s} The total charge passed is given by Q=I×tQ = I \times t: Q=1.55 A×7200 s=11160 CQ = 1.55 \text{ A} \times 7200 \text{ s} = 11160 \text{ C}

3. Calculate Actual Charge Used for Reaction (QactualQ_{actual}): Given current efficiency = 80% = 0.80 Qactual=Q×efficiencyQ_{actual} = Q \times \text{efficiency} Qactual=11160 C×0.80=8928 CQ_{actual} = 11160 \text{ C} \times 0.80 = 8928 \text{ C}

4. Calculate Moles of Electrons (nen_e): Faraday's constant (F) = 96485 C/mol (approximately 96500 C/mol for calculations) ne=QactualFn_e = \frac{Q_{actual}}{F} Using F = 96485 C/mol: ne=8928 C96485 C/mol0.09253 moln_e = \frac{8928 \text{ C}}{96485 \text{ C/mol}} \approx 0.09253 \text{ mol}

5. Calculate Moles of CO2CO_2 Produced (nCO2n_{CO_2}): From the anode reaction (C+2O2CO2+4eC + 2O^{2-} \rightarrow CO_2 + 4e^-), 4 moles of electrons produce 1 mole of CO2CO_2. nCO2=ne4n_{CO_2} = \frac{n_e}{4} nCO2=0.09253 mol40.02313 moln_{CO_2} = \frac{0.09253 \text{ mol}}{4} \approx 0.02313 \text{ mol}

6. Calculate Mass of CO2CO_2 (x): Molar mass of CO2CO_2 (MCO2M_{CO_2}) = Atomic mass of C + 2 ×\times Atomic mass of O MCO2=12.011 g/mol+2×15.999 g/mol=44.01 g/molM_{CO_2} = 12.011 \text{ g/mol} + 2 \times 15.999 \text{ g/mol} = 44.01 \text{ g/mol} Mass of CO2CO_2 (xx) = nCO2×MCO2n_{CO_2} \times M_{CO_2} x=0.02313 mol×44.01 g/mol1.018 gx = 0.02313 \text{ mol} \times 44.01 \text{ g/mol} \approx 1.018 \text{ g}

7. Report to Nearest Integer: Rounding 1.018 g to the nearest integer gives 1 g.