Solveeit Logo

Question

Question: Same current ‘I’ is flowing in the three infinitely long wire along positive x, y and z directions. ...

Same current ‘I’ is flowing in the three infinitely long wire along positive x, y and z directions. The magnetic field at a point (0, 0, -a) would be:
A. μ0i2πa(j^i^) B. μ0i2πa(i^+j^) C. μ0i2πa(i^j^) D. μ0i2πa(i^+j^+k^) \begin{aligned} & A.\text{ }\dfrac{{{\mu }_{0}}i}{2\pi a}\left( \widehat{j}-\widehat{i} \right) \\\ & B.\text{ }\dfrac{{{\mu }_{0}}i}{2\pi a}\left( \widehat{i}+\widehat{j} \right) \\\ & C.\text{ }\dfrac{{{\mu }_{0}}i}{2\pi a}\left( \widehat{i}-\widehat{j} \right) \\\ & D.\text{ }\dfrac{{{\mu }_{0}}i}{2\pi a}\left( \widehat{i}+\widehat{j}+\widehat{k} \right) \\\ \end{aligned}

Explanation

Solution

First locate point (0, 0, -a) and then apply magnetic field formula along X, Y and Z axis. This will give us the solution for the three infinitely long wires along the 3 – axis given in the question.

Formula used:
B=μoI2πrB=\dfrac{{{\mu }_{o}}I}{2\pi r}

Complete step by step solution:
First let’s locate point A (0, 0, -a) on the axis as shown in the figure.

As we can say in the figure point A is located on the -Z- axis
Current directions are in +Z -axis as shown in the figure.

Now the magnitude field at point A is,
BA=BX+BY+BZ...(1)\overrightarrow{{{B}_{A}}}=\overrightarrow{{{B}_{X}}}+\overrightarrow{{{B}_{Y}}}+\overrightarrow{{{B}_{Z}}}...\left( 1 \right)
Where, BA\overrightarrow{{{B}_{A}}} = magnetic field at point A.
BX\overrightarrow{{{B}_{X}}}= magnetic field due to X- axis
BY\overrightarrow{{{B}_{Y}}}= magnetic field due to Y-axis
BZ\overrightarrow{{{B}_{Z}}}= magnetic field due to Z-axis
Now let’s findBX\overrightarrow{{{B}_{X}}},

Formula for the magnetic field is,
B=μoI2πr\Rightarrow B=\dfrac{{{\mu }_{o}}I}{2\pi r}
Where, B = magnetic field
μo={{\mu }_{o}}= Permeability of the free space
r = distance from the wire to the point.
Here r will be taken as ‘a’ for BX\overrightarrow{{{B}_{X}}}
BX=(μoI2πa)j^\overrightarrow{{{B}_{X}}}=\left( \dfrac{{{\mu }_{o}}I}{2\pi a} \right)\widehat{j}
Direction of BX\overrightarrow{{{B}_{X}}}is in j^\widehat{j} direction.

Now similarly,
BY=(μoI2πa)(i^)\overrightarrow{{{B}_{Y}}}=\left( \dfrac{{{\mu }_{o}}I}{2\pi a} \right)\left( -\widehat{i} \right)
Direction of BY\overrightarrow{{{B}_{Y}}}will be (i^)\left( -\widehat{i} \right)direction.

Now, BZ\overrightarrow{{{B}_{Z}}}will be zero because the point A (0, 0, -a) lies on the Z-axis itself.
BZ=O{{B}_{Z}}=O

Now let’s put all the values in equation (1)
BA=(μoI2πa)j^+(μoI2πa)i^+o BA=(μoI2πa)(j^i^) \begin{aligned} & \Rightarrow \overrightarrow{{{B}_{A}}}=\left( \dfrac{{{\mu }_{o}}I}{2\pi a} \right)\widehat{j}+\left( \dfrac{{{\mu }_{o}}I}{2\pi a} \right)\widehat{i}+o \\\ & \therefore \overrightarrow{{{B}_{A}}}=\left( \dfrac{{{\mu }_{o}}I}{2\pi a} \right)\left( \widehat{j}-\widehat{i} \right) \\\ \end{aligned}

Hence the correct option is (A) (μoI2πa)(j^i^)\left( \dfrac{{{\mu }_{o}}I}{2\pi a} \right)\left( \widehat{j}-\widehat{i} \right),

Note:
When we are giving direction for the magnitude fields don’t mistake directions given for i^\widehat{i} as BX{{B}_{X}} because it is in the X direction use the thumb rule for the direction of the magnetic field as shown in figure.