Solveeit Logo

Question

Question: $S_n = \frac{1}{2.4} + \frac{1.3}{2.4.6} + \frac{1.3.5}{2.4.6.8} + ...$ ...

Sn=12.4+1.32.4.6+1.3.52.4.6.8+...S_n = \frac{1}{2.4} + \frac{1.3}{2.4.6} + \frac{1.3.5}{2.4.6.8} + ...

Answer

1/2

Explanation

Solution

The given series is Sn=12.4+1.32.4.6+1.3.52.4.6.8+...S_n = \frac{1}{2.4} + \frac{1.3}{2.4.6} + \frac{1.3.5}{2.4.6.8} + ...

Let's write the general term of the series, TkT_k.
The numerator of the kk-th term (for k1k \ge 1) is the product of the first kk odd numbers: 135(2k1)1 \cdot 3 \cdot 5 \cdot \dots \cdot (2k-1).
The denominator of the kk-th term is the product of the first k+1k+1 even numbers: 246(2k+2)2 \cdot 4 \cdot 6 \cdot \dots \cdot (2k+2).
So, Tk=135(2k1)246(2k+2)T_k = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2k-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2k+2)}.

We can rewrite the numerator and denominator using factorials.
Numerator: 135(2k1)=(2k)!24(2k)=(2k)!2kk!1 \cdot 3 \cdot 5 \cdot \dots \cdot (2k-1) = \frac{(2k)!}{2 \cdot 4 \cdot \dots \cdot (2k)} = \frac{(2k)!}{2^k k!}.
Denominator: 246(2k+2)=2k+1(123(k+1))=2k+1(k+1)!2 \cdot 4 \cdot 6 \cdot \dots \cdot (2k+2) = 2^{k+1} (1 \cdot 2 \cdot 3 \cdot \dots \cdot (k+1)) = 2^{k+1} (k+1)!.

So, the kk-th term TkT_k is:
Tk=(2k)!2kk!2k+1(k+1)!=(2k)!2kk!2k+1(k+1)!=(2k)!22k+1k!(k+1)!T_k = \frac{\frac{(2k)!}{2^k k!}}{2^{k+1} (k+1)!} = \frac{(2k)!}{2^k k! \cdot 2^{k+1} (k+1)!} = \frac{(2k)!}{2^{2k+1} k! (k+1)!}
We know that (2kk)=(2k)!k!k!\binom{2k}{k} = \frac{(2k)!}{k! k!}.
So, Tk=122k+11k+1(2k)!k!k!=122k+11k+1(2kk)T_k = \frac{1}{2^{2k+1}} \frac{1}{k+1} \frac{(2k)!}{k! k!} = \frac{1}{2^{2k+1}} \frac{1}{k+1} \binom{2k}{k}.
Tk=124k1k+1(2kk)T_k = \frac{1}{2 \cdot 4^k} \frac{1}{k+1} \binom{2k}{k}.

The sum SnS_n (which is an infinite series, let's call it SS) is:
S=k=1Tk=k=1124k1k+1(2kk)S = \sum_{k=1}^{\infty} T_k = \sum_{k=1}^{\infty} \frac{1}{2 \cdot 4^k} \frac{1}{k+1} \binom{2k}{k}.
S=12k=11k+1(2kk)(14)kS = \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k+1} \binom{2k}{k} \left(\frac{1}{4}\right)^k.

This series is related to the generating function for Catalan numbers. The kk-th Catalan number is Ck=1k+1(2kk)C_k = \frac{1}{k+1} \binom{2k}{k}.
The generating function for Catalan numbers is given by:
G(x)=k=0Ckxk=k=01k+1(2kk)xkG(x) = \sum_{k=0}^{\infty} C_k x^k = \sum_{k=0}^{\infty} \frac{1}{k+1} \binom{2k}{k} x^k.
It is a known result that G(x)=114x2xG(x) = \frac{1 - \sqrt{1-4x}}{2x}.

We need to evaluate the sum k=11k+1(2kk)(14)k\sum_{k=1}^{\infty} \frac{1}{k+1} \binom{2k}{k} \left(\frac{1}{4}\right)^k.
This sum is G(14)G\left(\frac{1}{4}\right) excluding the k=0k=0 term.
The k=0k=0 term of G(x)G(x) is C0x0=10+1(00)(x0)=111=1C_0 x^0 = \frac{1}{0+1} \binom{0}{0} (x^0) = 1 \cdot 1 \cdot 1 = 1.
So, k=11k+1(2kk)(14)k=G(14)C0\sum_{k=1}^{\infty} \frac{1}{k+1} \binom{2k}{k} \left(\frac{1}{4}\right)^k = G\left(\frac{1}{4}\right) - C_0.

Let's substitute x=14x = \frac{1}{4} into G(x)G(x):
G(14)=114(14)2(14)=11112=1012=112=2G\left(\frac{1}{4}\right) = \frac{1 - \sqrt{1-4\left(\frac{1}{4}\right)}}{2\left(\frac{1}{4}\right)} = \frac{1 - \sqrt{1-1}}{\frac{1}{2}} = \frac{1 - \sqrt{0}}{\frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2.

Now, substitute this back into the expression for SS:
S=12(G(14)C0)=12(21)=12(1)=12S = \frac{1}{2} \left( G\left(\frac{1}{4}\right) - C_0 \right) = \frac{1}{2} (2 - 1) = \frac{1}{2} (1) = \frac{1}{2}.

The sum of the series is 12\frac{1}{2}.