Solveeit Logo

Question

Question: Find the sum of the series \(S = 1 + \frac{2^2}{3^2} + \frac{6^2}{4^2} + \dots\) up to \(n\) terms....

Find the sum of the series S=1+2232+6242+S = 1 + \frac{2^2}{3^2} + \frac{6^2}{4^2} + \dots up to nn terms.

Answer

S=1  +  k=2n(k!)2(k+1)2S = 1 \;+\;\sum_{k=2}^{n}\frac{(k!)^{2}}{(k+1)^{2}}

Explanation

Solution

Step 1. Recognize the kkth term.
For k2k\ge2, the numerator follows 2,6,24,2,6,24,\dots i.e.\ k!k!. Hence the kkth term is

Tk  =  (k!)2(k+1)2(k2)T_{k} \;=\;\frac{(k!)^{2}}{(k+1)^{2}}\quad (k\ge2)

with T1=1T_{1}=1.

Step 2. Write the partial sum.

Sn=T1+k=2nTk=1+k=2n(k!)2(k+1)2.S_{n} = T_{1} + \sum_{k=2}^{n}T_{k} = 1 + \sum_{k=2}^{n}\frac{(k!)^{2}}{(k+1)^{2}}.

No simpler closed form in elementary terms exists beyond this factorial summation.