Solveeit Logo

Question

Question: S₁ = $\sum_{r=1}^{n}r$, S₂ = $\sum_{r=1}^{n}r^2$ and S₃ = $\sum_{r=1}^{n}r^3$, then the value of $\l...

S₁ = r=1nr\sum_{r=1}^{n}r, S₂ = r=1nr2\sum_{r=1}^{n}r^2 and S₃ = r=1nr3\sum_{r=1}^{n}r^3, then the value of limns1(1+s34)s22\lim_{n \to \infty} \frac{s_1(1+\frac{s_3}{4})}{s_2^2} is

A

916\frac{9}{16}

B

92\frac{9}{2}

C

932\frac{9}{32}

D

98\frac{9}{8}

Answer

932\frac{9}{32}

Explanation

Solution

For large nn, we use the asymptotic formulas:

S1=r=1nrn22,S2=r=1nr2n33,S3=r=1nr3(n22)2=n44.\begin{aligned} S_1 &= \sum_{r=1}^{n} r \approx \frac{n^2}{2}, \\ S_2 &= \sum_{r=1}^{n} r^2 \approx \frac{n^3}{3}, \\ S_3 &= \sum_{r=1}^{n} r^3 \approx \left(\frac{n^2}{2}\right)^2 = \frac{n^4}{4}. \end{aligned}

The given expression is:

limnS1(1+S34)S22.\lim_{n \to \infty} \frac{S_1\left(1+\frac{S_3}{4}\right)}{S_2^2}.

Substitute the asymptotic values:

1+S341+n416n416(since n4161).1+\frac{S_3}{4} \approx 1+\frac{n^4}{16} \sim \frac{n^4}{16} \quad (\text{since } \frac{n^4}{16} \gg 1).

Now, the numerator becomes:

S1(1+S34)n22n416=n632.S_1\left(1+\frac{S_3}{4}\right) \sim \frac{n^2}{2} \cdot \frac{n^4}{16} = \frac{n^6}{32}.

And the denominator:

S22(n33)2=n69.S_2^2 \sim \left(\frac{n^3}{3}\right)^2 = \frac{n^6}{9}.

Thus, the limit is:

limnn632n69=932.\lim_{n \to \infty} \frac{\frac{n^6}{32}}{\frac{n^6}{9}} = \frac{9}{32}.