Solveeit Logo

Question

Mathematics Question on Probability

Sn=1+2+3+...+nnS_{n} = \frac{1+2+3+...+n}{n} then S12+S22+S32+....+Sn2=S_{1}^{2} +S_{2}^{2} + S^{2}_{3}+....+S^{2}_{ n} =

A

n24(2n2+9n+13)\frac{n}{24} \left(2n^{2} +9n+13\right)

B

124(2n2+9n+13)\frac{1}{24} \left(2n^{2} +9n+13\right)

C

n224(2n2+9n+13)\frac{n^2}{24} \left(2n^{2} +9n+13\right)

D

n24(2n29n+13)\frac{n}{24} \left(2n^{2} - 9n+13\right)

Answer

n24(2n2+9n+13)\frac{n}{24} \left(2n^{2} +9n+13\right)

Explanation

Solution

Put n = 2 and verify the options . S12+S22=1+94=134S_1^2 + S_2^2 = 1 + \frac{9}{4} = \frac{13}{4}