Question
Question: Let $f(n) = \sum_{\substack{k=-n \\ k\neq 0}}^{n} (cot^{-1}(\frac{1}{k}) - tan^{-1}(k))$ such that $...
Let f(n)=∑k=−nk=0n(cot−1(k1)−tan−1(k)) such that ∑n=210(f(n)+f(n−1))=aπ then find the value of (a+1).

Answer
100
Explanation
Solution
- Term cot−1(k1)−tan−1(k) is 0 if k>0, and π if k<0.
- f(n)=∑k=1n0+∑k=−n−1π=nπ.
- ∑n=210(f(n)+f(n−1))=∑n=210(nπ+(n−1)π)=∑n=210(2n−1)π.
- ∑n=210(2n−1)=(2(2)−1)+(2(3)−1)+⋯+(2(10)−1)=3+5+⋯+19. This is an A.P. with 9 terms. Sum =29(3+19)=29(22)=99.
- So, ∑n=210(f(n)+f(n−1))=99π.
- Given aπ=99π⟹a=99.
- (a+1)=99+1=100.