Solveeit Logo

Question

Question: Let $f(n) = \sum_{\substack{k=-n \\ k\neq 0}}^{n} (cot^{-1}(\frac{1}{k}) - tan^{-1}(k))$ such that $...

Let f(n)=k=nk0n(cot1(1k)tan1(k))f(n) = \sum_{\substack{k=-n \\ k\neq 0}}^{n} (cot^{-1}(\frac{1}{k}) - tan^{-1}(k)) such that n=210(f(n)+f(n1))=aπ\sum_{n=2}^{10} (f(n)+f(n-1)) = a\pi then find the value of (a+1)(a + 1).

Answer

100

Explanation

Solution

  1. Term cot1(1k)tan1(k)cot^{-1}(\frac{1}{k}) - tan^{-1}(k) is 00 if k>0k>0, and π\pi if k<0k<0.
  2. f(n)=k=1n0+k=n1π=nπf(n) = \sum_{k=1}^n 0 + \sum_{k=-n}^{-1} \pi = n\pi.
  3. n=210(f(n)+f(n1))=n=210(nπ+(n1)π)=n=210(2n1)π\sum_{n=2}^{10} (f(n)+f(n-1)) = \sum_{n=2}^{10} (n\pi + (n-1)\pi) = \sum_{n=2}^{10} (2n-1)\pi.
  4. n=210(2n1)=(2(2)1)+(2(3)1)++(2(10)1)=3+5++19\sum_{n=2}^{10} (2n-1) = (2(2)-1) + (2(3)-1) + \dots + (2(10)-1) = 3+5+\dots+19. This is an A.P. with 9 terms. Sum =92(3+19)=92(22)=99= \frac{9}{2}(3+19) = \frac{9}{2}(22) = 99.
  5. So, n=210(f(n)+f(n1))=99π\sum_{n=2}^{10} (f(n)+f(n-1)) = 99\pi.
  6. Given aπ=99π    a=99a\pi = 99\pi \implies a=99.
  7. (a+1)=99+1=100(a+1) = 99+1 = 100.