Solveeit Logo

Question

Question: $\lim_{x \to -\infty} \frac{x^5 \tan(\frac{1}{\pi x^2})+3|x|^2+7}{|x|^3+7|x|+8}$...

limxx5tan(1πx2)+3x2+7x3+7x+8\lim_{x \to -\infty} \frac{x^5 \tan(\frac{1}{\pi x^2})+3|x|^2+7}{|x|^3+7|x|+8}

A

= 1π\frac{-1}{\pi}

B

= π\pi

C

= 1π\frac{1}{\pi}

D

Does not exist

Answer

= 1π\frac{-1}{\pi}

Explanation

Solution

For xx \to -\infty, x=x|x| = -x.

limxx5tan(1πx2)+3x2+7x37x+8\lim_{x \to -\infty} \frac{x^5 \tan(\frac{1}{\pi x^2})+3x^2+7}{-x^3-7x+8}

As xx \to -\infty, 1πx20\frac{1}{\pi x^2} \to 0. Using tanyy\tan y \approx y for small yy:

x5tan(1πx2)x51πx2=x3πx^5 \tan(\frac{1}{\pi x^2}) \approx x^5 \cdot \frac{1}{\pi x^2} = \frac{x^3}{\pi}.

The limit becomes limxx3π+3x2+7x37x+8\lim_{x \to -\infty} \frac{\frac{x^3}{\pi}+3x^2+7}{-x^3-7x+8}.

Divide numerator and denominator by x3x^3:

limx1π+3x+7x317x2+8x3=1π+0+010+0=1π\lim_{x \to -\infty} \frac{\frac{1}{\pi}+\frac{3}{x}+\frac{7}{x^3}}{-1-\frac{7}{x^2}+\frac{8}{x^3}} = \frac{\frac{1}{\pi}+0+0}{-1-0+0} = -\frac{1}{\pi}.