Question
Question: If $x = \sin^{-1}(a^6+1)+\cos^{-1}(a^4+1)-\tan^{-1}(a^2+1), a \in R$, then the value of $\sec^2 x$ i...
If x=sin−1(a6+1)+cos−1(a4+1)−tan−1(a2+1),a∈R, then the value of sec2x is 2.

Answer
True
Explanation
Solution
For sin−1(a6+1) and cos−1(a4+1) to be defined, a6+1=1 and a4+1=1, both implying a=0.
Substitute a=0 into the expression for x to get x=sin−1(1)+cos−1(1)−tan−1(1)=2π+0−4π=4π.
Then sec2x=sec2(4π)=(2)2=2.