Solveeit Logo

Question

Mathematics Question on Differentiability

Rolle's theorem is applicable in the interval [2,2][-2, 2] for the function

A

f(x)=x3f \left(x\right)=x^{3}

B

f(x)=4X4f \left(x\right)=4X^{4}

C

f(x)=2X3+3f \left(x\right)=2X^{3}+3

D

f(x)=πxf \left(x\right)=\pi\left|x\right|

Answer

f(x)=4X4f \left(x\right)=4X^{4}

Explanation

Solution

If we take f(x)=4x4f(x)=4 x^{4}, then
(i) f(x)f(x) is continuous in (2,2)(-2,2)
(ii) f(x)f(x) is differentiable in (2,2)(-2,2)
(iii) f(2)=f(2)f(-2)=f(2)
So, f(x)=4x4f(x)=4 x^{4} satisfies all the conditions of Rolle's theorem therefore \exists a point cc such that f(c)=0f'(c)=0
16c3=0c=0(2,2)\Rightarrow 16 c^{3}=0 \Rightarrow c=0 \in(-2,2)