Solveeit Logo

Question

Question: $\frac{(x-1)^2(x-3)(x+3)}{(x+4)^3.x(x-3)}>0$...

(x1)2(x3)(x+3)(x+4)3.x(x3)>0\frac{(x-1)^2(x-3)(x+3)}{(x+4)^3.x(x-3)}>0

A

(x1)2(x+3)(x+4)3.(x0)>0,x3.\frac{(x-1)^2(x+3)}{(x+4)^3.(x-0)}>0, x\neq 3.

B

The solution set is (4,3)(0,1)(1,3)(3,)(-4, -3) \cup (0, 1) \cup (1, 3) \cup (3, \infty).

C

The solution set is (4,3)(0,3)(3,)(-4, -3) \cup (0, 3) \cup (3, \infty).

D

The solution set is (4,3)(0,)(-4, -3) \cup (0, \infty).

Answer

The solution set is (4,3)(0,1)(1,3)(3,)(-4, -3) \cup (0, 1) \cup (1, 3) \cup (3, \infty).

Explanation

Solution

The critical points are x=4,3,0,1,3x = -4, -3, 0, 1, 3. The expression simplifies to (x1)2(x+3)x(x+4)3\frac{(x-1)^2(x+3)}{x(x+4)^3} for x3x \neq 3. We analyze the sign of this expression in the intervals defined by the critical points.

  • For x>3x > 3, all factors are positive, so the expression is positive.
  • For 1<x<31 < x < 3, (x1)2>0(x-1)^2 > 0, (x+3)>0(x+3) > 0, x>0x > 0, (x+4)3>0(x+4)^3 > 0. The expression is positive.
  • For 0<x<10 < x < 1, (x1)2>0(x-1)^2 > 0, (x+3)>0(x+3) > 0, x>0x > 0, (x+4)3>0(x+4)^3 > 0. The expression is positive.
  • For 3<x<0-3 < x < 0, (x1)2>0(x-1)^2 > 0, (x+3)>0(x+3) > 0, x<0x < 0, (x+4)3>0(x+4)^3 > 0. The expression is negative.
  • For 4<x<3-4 < x < -3, (x1)2>0(x-1)^2 > 0, (x+3)<0(x+3) < 0, x<0x < 0, (x+4)3>0(x+4)^3 > 0. The expression is positive.
  • For x<4x < -4, (x1)2>0(x-1)^2 > 0, (x+3)<0(x+3) < 0, x<0x < 0, (x+4)3<0(x+4)^3 < 0. The expression is negative. The inequality holds for (4,3)(0,1)(1,3)(3,)(-4, -3) \cup (0, 1) \cup (1, 3) \cup (3, \infty).