Solveeit Logo

Question

Question: $\Rightarrow F' = \frac{1}{2\pi\epsilon_0} \times \frac{qQx}{[(\frac{d}{2})^2 + x^2]^{3/2}}$ For ma...

F=12πϵ0×qQx[(d2)2+x2]3/2\Rightarrow F' = \frac{1}{2\pi\epsilon_0} \times \frac{qQx}{[(\frac{d}{2})^2 + x^2]^{3/2}}

For maximum force, dFdx=0\frac{dF'}{dx} = 0

qQ2πϵ0×[[(d2)2+x2]3/2x32[(d2)2+x2]5/22x]=0\frac{qQ}{2\pi\epsilon_0} \times [[(\frac{d}{2})^2 + x^2]^{-3/2} - x\frac{3}{2}[(\frac{d}{2})^2 + x^2]^{-5/2}2x] = 0

Answer

x=±d22x = \pm \frac{d}{2\sqrt{2}}

Explanation

Solution

The given equation is derived from setting the first derivative of the force FF' with respect to xx equal to zero to find the condition for maximum force. The equation is: qQ2πϵ0×[((d2)2+x2)3/2x32((d2)2+x2)5/22x]=0\frac{qQ}{2\pi\epsilon_0} \times \left[ \left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-3/2} - x\frac{3}{2}\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2}2x \right] = 0

Since qQ2πϵ0\frac{qQ}{2\pi\epsilon_0} is a non-zero constant (assuming q,Q0q, Q \ne 0), we can divide the equation by this term: ((d2)2+x2)3/2x32((d2)2+x2)5/22x=0\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-3/2} - x\frac{3}{2}\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2}2x = 0

Simplify the second term: x32((d2)2+x2)5/22x=3x2((d2)2+x2)5/2x\frac{3}{2}\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2}2x = 3x^2\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2}

The equation becomes: ((d2)2+x2)3/23x2((d2)2+x2)5/2=0\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-3/2} - 3x^2\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2} = 0

Factor out the term with the lower power, ((d2)2+x2)5/2\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2}: ((d2)2+x2)5/2[((d2)2+x2)3/2((d2)2+x2)5/23x2]=0\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2} \left[ \frac{\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-3/2}}{\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2}} - 3x^2 \right] = 0

Simplify the term inside the square bracket using the rule aman=amn\frac{a^m}{a^n} = a^{m-n}: ((d2)2+x2)3/2((d2)2+x2)5/2=((d2)2+x2)3/2(5/2)=((d2)2+x2)3/2+5/2=((d2)2+x2)2/2=(d2)2+x2\frac{\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-3/2}}{\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2}} = \left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-3/2 - (-5/2)} = \left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-3/2 + 5/2} = \left(\left(\frac{d}{2}\right)^2 + x^2\right)^{2/2} = \left(\frac{d}{2}\right)^2 + x^2

Substitute this back into the factored equation: ((d2)2+x2)5/2[(d2)2+x23x2]=0\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2} \left[ \left(\frac{d}{2}\right)^2 + x^2 - 3x^2 \right] = 0

The term ((d2)2+x2)5/2=1((d2)2+x2)5/2\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{-5/2} = \frac{1}{\left(\left(\frac{d}{2}\right)^2 + x^2\right)^{5/2}} is non-zero for real values of xx and dd (unless d=0d=0 and x=0x=0, where the original force is undefined). Therefore, the term in the square bracket must be zero: (d2)2+x23x2=0\left(\frac{d}{2}\right)^2 + x^2 - 3x^2 = 0

Combine the x2x^2 terms: (d2)22x2=0\left(\frac{d}{2}\right)^2 - 2x^2 = 0

Solve for x2x^2: d24=2x2\frac{d^2}{4} = 2x^2 x2=d24×2x^2 = \frac{d^2}{4 \times 2} x2=d28x^2 = \frac{d^2}{8}

Take the square root of both sides to find xx: x=±d28x = \pm \sqrt{\frac{d^2}{8}} x=±d8x = \pm \frac{d}{\sqrt{8}} x=±d22x = \pm \frac{d}{2\sqrt{2}}

The maximum force occurs when the test charge is located at a distance x=d22|x| = \frac{d}{2\sqrt{2}} from the origin along the axis.