Solveeit Logo

Question

Question: $\rightarrow ax^2+bx+c$ if Quadratic function f(x) gives value $\frac{-(b^2-4ac)}{8a}$ on the inpu...

ax2+bx+c\rightarrow ax^2+bx+c

if Quadratic function f(x) gives value (b24ac)8a\frac{-(b^2-4ac)}{8a} on the input x1x_1 and x2x_2 Respectively, iff x1+x2=12x_1+x_2=12

Then value of b8a\frac{-b}{8a}

also given: D>0D>0

Answer

3/2

Explanation

Solution

The quadratic function is given by f(x)=ax2+bx+cf(x) = ax^2+bx+c. We are given that f(x1)=(b24ac)8af(x_1) = \frac{-(b^2-4ac)}{8a} and f(x2)=(b24ac)8af(x_2) = \frac{-(b^2-4ac)}{8a}. Let D=b24acD = b^2-4ac. So, f(x1)=D8af(x_1) = \frac{-D}{8a} and f(x2)=D8af(x_2) = \frac{-D}{8a}. This means that x1x_1 and x2x_2 are the roots of the equation f(x)=D8af(x) = \frac{-D}{8a}. Substituting f(x)=ax2+bx+cf(x) = ax^2+bx+c, we get: ax2+bx+c=D8aax^2+bx+c = \frac{-D}{8a} ax2+bx+c(D8a)=0ax^2+bx+c - \left(\frac{-D}{8a}\right) = 0 ax2+bx+c+D8a=0ax^2+bx+c + \frac{D}{8a} = 0 ax2+bx+8ac+D8a=0ax^2+bx + \frac{8ac+D}{8a} = 0 Since D=b24acD = b^2-4ac, we have ax2+bx+8ac+(b24ac)8a=0ax^2+bx + \frac{8ac+(b^2-4ac)}{8a} = 0 ax2+bx+b2+4ac8a=0ax^2+bx + \frac{b^2+4ac}{8a} = 0

Let x1x_1 and x2x_2 be the roots of this quadratic equation. According to Vieta's formulas, the sum of the roots of a quadratic equation Ax2+Bx+C=0Ax^2+Bx+C=0 is given by BA-\frac{B}{A}. In our case, A=aA=a, B=bB=b, and C=b2+4ac8aC=\frac{b^2+4ac}{8a}. So, the sum of the roots x1+x2=bax_1+x_2 = \frac{-b}{a}.

We are given in the problem that x1+x2=12x_1+x_2=12. Therefore, we can equate the two expressions for the sum of the roots: ba=12\frac{-b}{a} = 12

The question asks for the value of b8a\frac{-b}{8a}. We can express b8a\frac{-b}{8a} in terms of ba\frac{-b}{a}: b8a=18×(ba)\frac{-b}{8a} = \frac{1}{8} \times \left(\frac{-b}{a}\right) Substitute the value ba=12\frac{-b}{a}=12: b8a=18×12\frac{-b}{8a} = \frac{1}{8} \times 12 b8a=128\frac{-b}{8a} = \frac{12}{8} b8a=32\frac{-b}{8a} = \frac{3}{2}

The condition D>0D>0 ensures that the value D8a\frac{-D}{8a} is distinct from the vertex value D4a\frac{-D}{4a} (since a0a \ne 0), and thus there are indeed two distinct values x1x_1 and x2x_2 for which f(x)f(x) takes this value.

Explanation of the solution:

  1. Identify x1x_1 and x2x_2 as roots of the equation f(x)=(b24ac)8af(x) = \frac{-(b^2-4ac)}{8a}.
  2. Rewrite the equation as ax2+bx+(c(b24ac)8a)=0ax^2+bx+(c - \frac{-(b^2-4ac)}{8a}) = 0.
  3. Simplify the constant term: c+b24ac8a=8ac+b24ac8a=b2+4ac8ac + \frac{b^2-4ac}{8a} = \frac{8ac+b^2-4ac}{8a} = \frac{b^2+4ac}{8a}.
  4. The equation becomes ax2+bx+b2+4ac8a=0ax^2+bx+\frac{b^2+4ac}{8a} = 0.
  5. Use Vieta's formulas for the sum of roots: x1+x2=bax_1+x_2 = -\frac{b}{a}.
  6. Given x1+x2=12x_1+x_2=12, so equate: ba=12-\frac{b}{a}=12.
  7. Calculate the required value b8a=18×(ba)=18×12=32\frac{-b}{8a} = \frac{1}{8} \times \left(-\frac{b}{a}\right) = \frac{1}{8} \times 12 = \frac{3}{2}.