Solveeit Logo

Question

Physics Question on Motion in a plane

Resultant of two vectors A\vec{A} and B\vec{B} is of magnitude PP. If B\vec{B} is reversed, then resultant is of magnitude QQ. What is the value of P2+Q2P^2 + Q^2 ?

A

2(A2+B2)2\left(A^{2}+B^{2}\right)

B

2(A2B2)2\left(A^{2}-B^{2}\right)

C

A2B2A^{2}-B^{2}

D

A2+B2A^{2}+B^{2}

Answer

2(A2+B2)2\left(A^{2}+B^{2}\right)

Explanation

Solution

Let θ\theta be angle between A\vec{A} and B\vec{B}.
\therefore Resultant of A\vec{A} and B\vec{B} is
P=A2+B2+2ABcosθ...(i)P=\sqrt{A^{2}+B^{2}+2AB\,cos\,\theta}\,...\left(i\right)

When B\vec{B} is reversed, then the angle between A\vec{A} and B-\vec{B} is (180θ)\left(180^{\circ}-\theta\right).
Resultant of A\vec{A} and B\vec{B} is
Q=A2+B2+2ABcos(180θ)Q=\sqrt{A^{2}+B^{2}+2AB\,cos\left(180^{\circ}-\theta\right)}
Q=A2+B22ABcosθ...(ii)Q=\sqrt{A^{2}+B^{2}-2AB\,cos\,\theta}\,...\left(ii\right)

Squaring and adding (i)\left(i\right) and (ii)\left(ii\right), we get
P2+Q2=2(A2+B2)P^{2}+Q^{2}=2\left(A^{2}+B^{2}\right)