Solveeit Logo

Question

Question: Resultant of two vectors \(\overrightarrow{A}\)and \(\overrightarrow{B}\)is of magnitude P. If \(\ov...

Resultant of two vectors A\overrightarrow{A}and B\overrightarrow{B}is of magnitude P. If B\overrightarrow{B}is reversed, then resultant is of magnitude Q. What is the value of P2+Q2P^{2} + Q^{2}?

A

2(A2+B2)2(A^{2} + B^{2})

B

2(A2B2)2(A^{2} - B^{2})

C

A2B2A^{2} - B^{2}

D

A2+B2A^{2} + B^{2}

Answer

2(A2+B2)2(A^{2} + B^{2})

Explanation

Solution

Let θ\thetabe angle between A\overset{\rightarrow}{A}and B\overset{\rightarrow}{B}is

\thereforeResultant of A\overset{\rightarrow}{A}and B\overset{\rightarrow}{B}is

P=A2+B2+2ABcosθP = \sqrt{A^{2} + B^{2} + 2AB\cos\theta} ….(i)

When B\overset{\rightarrow}{B} is reversed, then the angle between A\overset{\rightarrow}{A} and B- \overset{\rightarrow}{B} is (180θ180{^\circ} - \theta)

Resultant of A\overset{\rightarrow}{A} and B- \overset{\rightarrow}{B}is

Q=A2+B2+2ABcos(180θ)Q = \sqrt{A^{2} + B^{2} + 2AB\cos(180{^\circ} - \theta)}

Q=A2+B22ABcosθQ = \sqrt{A^{2} + B^{2} - 2AB\cos\theta} ….. (ii)

Squaring and adding (i) and (ii), we get

P2+Q2=2(A2+B2)P^{2} + Q^{2} = 2(A^{2} + B^{2})