Solveeit Logo

Question

Chemistry Question on Conductance

Resistance of a conductivity cell (cell constant 129 m–1) filled with 74.5 ppm solution of KCI is 100 Ω (labelled as solution 1). When the same cell is filled with KCl solution of 149 ppm, the resistance is 50 Ω (labelled as solution 2). The ratio of molar conductivity of solution 1 and solution 2 is Λ1Λ2=x×103\frac{\Lambda_1}{\Lambda_2} = x \times 10^{-3}. The value of x is _________. (Nearest integer)
(Given : molar mass of KCl is 74.5 g mol–1).

Answer

For Solution 1,
Λm1=1000KM\Lambda_{m1} = \frac{1000K}{M}

M=74.574.5×1000106=103MM = \frac{74.5}{74.5} \times \frac{1000}{106} = 10^{-3} \, M
[density of solution = 1 g/mol]

Λ1=1000×129×104103\Lambda_1 = \frac{1000 \times 129 \times 10^{-4}}{10^{-3}}

=129×102S cm2mol1= 129 \times 10^2 \, \text{S cm}^2 \, \text{mol}^{-1}
[K=xR=129×102100][K = \frac{x}{R} = \frac{129 \times 10^{-2}}{100}]

For Solution 2,
K=129×10250K = \frac{129 \times 10^{-2}}{50}

Λ2=1000×129×10250M\Lambda_2 = \frac{1000 \times 129 \times 10^{-2}}{50M}

M=14974.5×1000106M = \frac{149}{74.5} \times \frac{1000}{106}
=2×103M= 2 \times 10^{-3} \, M

Λ2=1000×129×10250×2×103\Lambda_2 = \frac{1000 \times 129 \times 10^{-2}}{50 \times 2 \times 10^{-3}}
=129×102S cm2mol1= 129 \times 10^2 \, \text{S cm}^2 \, \text{mol}^{-1}
Λ1Λ2=1\frac{\Lambda_1}{\Lambda_2} = 1
Λ1Λ2=1000×103\frac{\Lambda_1}{\Lambda_2} = 1000 \times 10^{-3}
The ratio of molar conductivity of solution 1 and solution 2 is,
Λ1Λ2=x×103\frac{\Lambda_1}{\Lambda_2} = x \times 10^{-3}
On comparing,
x=1000⇒ x = 1000
So, the answer is 1000.