Solveeit Logo

Question

Question: remainder when 2^(32^32) is divided by 7...

remainder when 2^(32^32) is divided by 7

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

To find the remainder when 232322^{32^{32}} is divided by 7, we use properties of modular arithmetic.

  1. Analyze the base modulo the divisor:
    We need to find the remainder of 2X(mod7)2^X \pmod{7}, where X=3232X = 32^{32}.
    Let's look at the powers of 2 modulo 7:
    212(mod7)2^1 \equiv 2 \pmod{7}
    224(mod7)2^2 \equiv 4 \pmod{7}
    2381(mod7)2^3 \equiv 8 \equiv 1 \pmod{7}
    The cycle length of powers of 2 modulo 7 is 3. This means that 2k(mod7)2^k \pmod{7} depends on k(mod3)k \pmod{3}. Specifically, if kr(mod3)k \equiv r \pmod{3}, then 2k2r(mod7)2^k \equiv 2^r \pmod{7} (for r0r \neq 0). If k0(mod3)k \equiv 0 \pmod 3, then 2k231(mod7)2^k \equiv 2^3 \equiv 1 \pmod 7.

  2. Evaluate the exponent modulo the cycle length:
    The exponent is X=3232X = 32^{32}. We need to find X(mod3)X \pmod{3}.
    First, reduce the base of the exponent (32) modulo 3:
    32=10×3+232 = 10 \times 3 + 2, so 322(mod3)32 \equiv 2 \pmod{3}.
    Alternatively, 321(mod3)32 \equiv -1 \pmod{3}.
    Now, substitute this into the exponent:
    X=3232(1)32(mod3)X = 32^{32} \equiv (-1)^{32} \pmod{3}.
    Since 32 is an even number, (1)32=1(-1)^{32} = 1.
    Therefore, X=32321(mod3)X = 32^{32} \equiv 1 \pmod{3}.

  3. Combine the results:
    Since 32321(mod3)32^{32} \equiv 1 \pmod{3}, we can write 323232^{32} in the form 3k+13k+1 for some non-negative integer kk.
    Now substitute this back into the original expression:
    23232=23k+12^{32^{32}} = 2^{3k+1}.
    We want to find 23k+1(mod7)2^{3k+1} \pmod{7}.
    23k+1=23k21=(23)k2(mod7)2^{3k+1} = 2^{3k} \cdot 2^1 = (2^3)^k \cdot 2 \pmod{7}.
    From step 1, we know that 231(mod7)2^3 \equiv 1 \pmod{7}.
    So, (23)k21k2(mod7)(2^3)^k \cdot 2 \equiv 1^k \cdot 2 \pmod{7}.
    1k212(mod7)1^k \cdot 2 \equiv 1 \cdot 2 \pmod{7}.
    122(mod7)1 \cdot 2 \equiv 2 \pmod{7}.

Thus, the remainder when 232322^{32^{32}} is divided by 7 is 2.