Solveeit Logo

Question

Question: Relationship between atomic radius and the edge length a of a body – centred cubic unit cell is...

Relationship between atomic radius and the edge length a of a body – centred cubic unit cell is

A

r = a/2

B

r=a/2r = \sqrt{a/2}

C

r=34ar = \frac{\sqrt{3}}{4}a

D

r=3a2r = \frac{3a}{2}

Answer

r=34ar = \frac{\sqrt{3}}{4}a

Explanation

Solution

Distance between nearest neighbours.

d=AD2d = \frac{AD}{2}

In right angled

ΔABC,AC=AB2+BC2\Delta ABC,AC = AB^{2} + BC^{2}

AC2=a2+a2AC^{2} = a^{2} + a^{2}or AC=2aAC = \sqrt{2a}

Now in right angled ΔADC\Delta ADC,

AD2=AC2+DC2AD^{2} = AC^{2} + DC^{2}

AD2=(2a)2+a2=3a2AD=3aAD^{2} = (\sqrt{2}a)^{2} + a^{2} = 3a^{2} \Rightarrow AD = \sqrt{3}a

d=3a2\therefore d = \frac{\sqrt{3}a}{2}

Radius, r=d2=34ar = \frac{d}{2} = \frac{\sqrt{3}}{4}a