Solveeit Logo

Question

Question: An AC circuit containing 800 mH inductor and a 60 $\mu$F capacitor is in series with 15$\Omega$ resi...

An AC circuit containing 800 mH inductor and a 60 μ\muF capacitor is in series with 15Ω\Omega resistance. They are connected to 230 V, 50 Hz AC supply. Obtain total power consumed near to :-

A

20 watt

B

5 watt

C

40 watt

D

10 watt

Answer

20 watt

Explanation

Solution

  1. Calculate the angular frequency (ω\omega): ω=2πf=2π(50Hz)=100πrad/s\omega = 2\pi f = 2\pi (50 \, \text{Hz}) = 100\pi \, \text{rad/s}

  2. Calculate the inductive reactance (XLX_L) and capacitive reactance (XCX_C): Inductive reactance: XL=ωL=(100πrad/s)(0.8H)=80πΩ251.33ΩX_L = \omega L = (100\pi \, \text{rad/s})(0.8 \, \text{H}) = 80\pi \, \Omega \approx 251.33 \, \Omega

    Capacitive reactance: XC=1ωC=1(100πrad/s)(60×106F)=1066000πΩ=5003πΩ53.05ΩX_C = \frac{1}{\omega C} = \frac{1}{(100\pi \, \text{rad/s})(60 \times 10^{-6} \, \text{F})} = \frac{10^6}{6000\pi} \, \Omega = \frac{500}{3\pi} \, \Omega \approx 53.05 \, \Omega

  3. Calculate the net reactance (XX): X=XLXC=80π5003π251.33Ω53.05Ω=198.28ΩX = X_L - X_C = 80\pi - \frac{500}{3\pi} \approx 251.33 \, \Omega - 53.05 \, \Omega = 198.28 \, \Omega

  4. Calculate the impedance (ZZ): Z=R2+X2=(15Ω)2+(198.28Ω)2=225+39314.27=39539.27Ω198.84ΩZ = \sqrt{R^2 + X^2} = \sqrt{(15 \, \Omega)^2 + (198.28 \, \Omega)^2} = \sqrt{225 + 39314.27} = \sqrt{39539.27} \, \Omega \approx 198.84 \, \Omega

  5. Calculate the total power consumed (PP): The power consumed in an AC circuit is dissipated only by the resistor. P=Vrms2RZ2=(230V)2×15Ω(198.84Ω)2=52900×1539538.38W=79350039538.38W20.07WP = \frac{V_{rms}^2 R}{Z^2} = \frac{(230 \, \text{V})^2 \times 15 \, \Omega}{(198.84 \, \Omega)^2} = \frac{52900 \times 15}{39538.38} \, \text{W} = \frac{793500}{39538.38} \, \text{W} \approx 20.07 \, \text{W}