Solveeit Logo

Question

Question: Reflecting the point (2, –1) about *y*-axis, coordinate axes are rotated at \(45^{o}\)angle in negat...

Reflecting the point (2, –1) about y-axis, coordinate axes are rotated at 45o45^{o}angle in negative direction without shifting the origin. The new coordinates of the point are

A

(12,32)\left( \frac{- 1}{\sqrt{2}},\frac{- 3}{\sqrt{2}} \right)

B

(32,12)\left( \frac{- 3}{\sqrt{2}},\frac{1}{\sqrt{2}} \right)

C

(12,32)\left( \frac{1}{\sqrt{2}},\frac{3}{\sqrt{2}} \right)

D

None

Answer

(12,32)\left( \frac{- 1}{\sqrt{2}},\frac{- 3}{\sqrt{2}} \right)

Explanation

Solution

The new position after reflection is (–2, –1)

Rotation makes it

[(2)cos(45o)+(1)sin(45o),(2)sin(45o)+(1)cos(45o)]\lbrack( - 2)\cos( - 45^{o}) + ( - 1)\sin( - 45^{o}), - ( - 2)\sin( - 45^{o}) + ( - 1)\cos( - 45^{o})\rbrack, i.e., [12,32]\left\lbrack \frac{- 1}{\sqrt{2}},\frac{- 3}{\sqrt{2}} \right\rbrack