Solveeit Logo

Question

Question: Reduction formulas can be used to compute integrals of higher power of sin x, cos x, tan x etc. $\i...

Reduction formulas can be used to compute integrals of higher power of sin x, cos x, tan x etc.

sin5xdx=15sin4xcosx+Asin2xcosx815cosx+C\int sin^5 x dx = -\frac{1}{5}sin^4 x cos x + A sin^2 x cos x - \frac{8}{15}cos x + C, then A equals:

A

215-\frac{2}{15}

B

35-\frac{3}{5}

C

415-\frac{4}{15}

D

115-\frac{1}{15}

Answer

415-\frac{4}{15}

Explanation

Solution

The reduction formula for the integral of sinnx\sin^n x is given by: sinnxdx=1nsinn1xcosx+n1nsinn2xdx\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx For n=5n=5: sin5xdx=15sin51xcosx+515sin52xdx\int \sin^5 x \, dx = -\frac{1}{5} \sin^{5-1} x \cos x + \frac{5-1}{5} \int \sin^{5-2} x \, dx sin5xdx=15sin4xcosx+45sin3xdx\int \sin^5 x \, dx = -\frac{1}{5} \sin^4 x \cos x + \frac{4}{5} \int \sin^3 x \, dx Now, we apply the reduction formula for n=3n=3: sin3xdx=13sin31xcosx+313sin32xdx\int \sin^3 x \, dx = -\frac{1}{3} \sin^{3-1} x \cos x + \frac{3-1}{3} \int \sin^{3-2} x \, dx sin3xdx=13sin2xcosx+23sinxdx\int \sin^3 x \, dx = -\frac{1}{3} \sin^2 x \cos x + \frac{2}{3} \int \sin x \, dx sin3xdx=13sin2xcosx+23(cosx)+C\int \sin^3 x \, dx = -\frac{1}{3} \sin^2 x \cos x + \frac{2}{3} (-\cos x) + C' sin3xdx=13sin2xcosx23cosx+C\int \sin^3 x \, dx = -\frac{1}{3} \sin^2 x \cos x - \frac{2}{3} \cos x + C' Substitute this result back into the expression for sin5xdx\int \sin^5 x \, dx: sin5xdx=15sin4xcosx+45(13sin2xcosx23cosx)+C\int \sin^5 x \, dx = -\frac{1}{5} \sin^4 x \cos x + \frac{4}{5} \left( -\frac{1}{3} \sin^2 x \cos x - \frac{2}{3} \cos x \right) + C sin5xdx=15sin4xcosx415sin2xcosx815cosx+C\int \sin^5 x \, dx = -\frac{1}{5} \sin^4 x \cos x - \frac{4}{15} \sin^2 x \cos x - \frac{8}{15} \cos x + C The given expression is: sin5xdx=15sin4xcosx+Asin2xcosx815cosx+C\int \sin^5 x \, dx = -\frac{1}{5}\sin^4 x \cos x + A \sin^2 x \cos x - \frac{8}{15}\cos x + C Comparing the derived expression with the given expression, the coefficient of the sin2xcosx\sin^2 x \cos x term is AA. Therefore, A=415A = -\frac{4}{15}.