Question
Mathematics Question on Complex Numbers and Quadratic Equations
Reduce (1−4i1−1+i2)(5+i3−4i) to the standard form .
Answer
(\frac{1}{1-4i}-\frac{2}{1+i})(\frac{3-4i}{5+i})$$=[\frac{(1+i)-2(1-4i)}{(1-4i)(1+i)}][\frac{3-4i}{5+i}]
=[1+i−4i−4i21+i−2+8i][5−3i3−4i]=[5−3i−1+9i][5+i3−4i]
[25+5i−15i−3i2−3+4i+27i−362]=28−10i33+31i−4i=14−5i33+31i
=2(14−5i)(33+3li)×(14−5i)(14+5i) [onmultiplayingnumeratoranddenominatorby(14+5i)]
2[(14)2(5i)2]462+165i+434i+155i2=2(196−25i2)307+599i
=2(221)307+599i=442307+599i=442307+442599i
This is the required standard form.