Solveeit Logo

Question

Question: Real part of \(e^{e^{i\theta}}\) is...

Real part of eeiθe^{e^{i\theta}} is

A

ecosθ[cos(sinθ)]e^{\cos\theta}\lbrack\cos(\sin\theta)\rbrack

B

ecosθ[cos(cosθ)]e^{\cos\theta}\lbrack\cos(\cos\theta)\rbrack

C

esinθ[sin(cosθ)]e^{\sin\theta}\lbrack\sin(\cos\theta)\rbrack

D

esinθ[sin(sinθ)]e^{\sin\theta}\lbrack\sin(\sin\theta)\rbrack

Answer

ecosθ[cos(sinθ)]e^{\cos\theta}\lbrack\cos(\sin\theta)\rbrack

Explanation

Solution

Sol.eeiθ=e(cosθ+isinθ)=ecosθ.eisinθ=ecosθ[cos(isinθ)+isin(sinθ)]e^{e^{i\theta}} = e^{(\cos\theta + i\sin\theta)} = e^{\cos\theta}.e^{i\sin\theta} = e^{\cos\theta}\lbrack\cos(i\sin\theta) + i\sin(\sin\theta)\rbrack

∴ Real part of eeiθe^{e^{i\theta}}is ecosθ[cos(sinθ)]e^{\cos\theta}\lbrack\cos(\sin\theta)\rbrack.