Solveeit Logo

Question

Question: Real part of \({\cos h}(\alpha + i\beta)\) is....

Real part of cosh(α+iβ){\cos h}(\alpha + i\beta) is.

A

coshαcosβ\cosh\alpha\cos\beta

B

cosαcosβ\cos\alpha\cos\beta

C

cosαcoshβ\cos\alpha\cosh\beta

D

sinαsinhβ\sin\alpha{\sin h}\beta

Answer

coshαcosβ\cosh\alpha\cos\beta

Explanation

Solution

Real part of cosh\cosh (α+iβ)(\alpha + i\beta) is

\because cosh(α+iβ){\cos h}(\alpha + i\beta)

=coshαcoshiβ+sinhαsinhβi= {\cos h}\alpha{\cos h}i\beta + {\sin h}\alpha{\sin h}\beta i

=coshαcosβ+isinhαsinβ= {\cos h}\alpha\cos\beta + i{\sin h}\alpha\sin\beta

∴ Real part =coshαcosβ{\cos h}\alpha\cos\beta.